

2007 Structures Congress May 17-19 Long Beach CA

Determine the stiffness of the joists: Determine approx. moment of inertia from

$$I_j = 26.767 (W_{LL}) (L^3) (10^{-6})$$
 Eq. 2-2

where,

W_{LL} = nominal live load that will produce an approximate deflection of Span/360 (RED figure in the Load Table)

L = (Span – 0.33), ft.

2007 Structures Congress May 17-19 Long Beach CA

Design Approaches for Strengthening Individual Joist Members

Considerations for Either Approach

- Cost of materials for reinforcement is insignificant to the cost of labor
- Safest to reinforce the joist in the shored position
 - Welding can generate enough heat to cause temporary loss of steel strength
 - · Transverse field welds should be avoided
- Best to reinforce the members with dead and live loads removed
 - · Jack the joist up to a calculated deflection
- Pay close attention to eccentricities caused by the reinforcing

2007 Structures Congress May 17-19 Long Beach CA

TD12 - 47

Design Approaches for Strengthening Individual Joist Members For Approach II It is assumed that applied forces are distributed between the existing member and the reinforcing member

- Direct proportion to their areas
- If joists are shored to remove existing load
- The preload is then zero
- If joists are not shored
 - Preload can be calculated based on load present at the time of reinforcing
- Shoring and jack placement is the responsibility of the Specifying Professional

2007 Structures Congress May 17-19 Long Beach CA

Design Examples for Strengthening Joists	
Example 3.1	Strengthening a K-Series Joist with Crimped Angle Webs
Example 3.2	Strengthening a K-Series Joist with Rod Webs
Example 3.3	Strengthening an End Diagonal (W2) using Double Angles
Example 3.4	Strengthening of Joist Girder Chords
Example 3.5	Strengthening of a LH-Series Joist with Double Angle Webs
Example 3.6	Design of a Strut to Prevent Top Chord Bending between Panel Points
20	007 Structures Congress May 17-19 Long Beach CA TD12 - 73

End Web Weld Design for Total Required Force:

 $P_{t} = 60.5 \text{ kips}$

Based on 3/16" fillet weld and using E70 electrodes, the allowable shear per inch of weld equals:

(0.707)(0.188 in.)(21 ksi) = 2.79 kips/in.

Thus, 60.5/2.79 = 21.7 in.

(use 11 in. at each end of each web angle)

2007 Structures Congress May 17-19 Long Beach CA

<text><text><text><text><equation-block><equation-block><equation-block><equation-block><text>

Example 3.5 Strengthening of a LH-Series Joist with Double Angle Webs

Check buckling strength of the composite section (cont'd)

 $F_{cr} = \left[0.658^{\frac{36}{37.39}}\right] 36 = 24.06 \text{ ksi}$

(AISC E3-2)

The available axial compressive stress is:

$$F_a = \frac{F_{cr}}{\Omega_c} = 14.41 \text{ ksi}$$

The available compressive force is:

F

 $P_{c} = (14.41)(1.674) = 24.12 \text{ kips} > 18.1 \text{ kips required }$ Therefore, OK

2007 Structures Congress May 17-19 Long Beach CA

TD12 - 97

<section-header><text><text><text><equation-block><equation-block><text><text><text><text>

End Web Reinforcing Weld Design:

Joint between Rod and Angle will be a partial-jointpenetration groove weld.

Effective throat thickness of 5/16 times the rod radius.

(AISC Specification Table J2.2 for Flare Bevel Groove weld)

Effective throat = 5/16 x <u>3/4"</u> = 0.117 in.

Allowable shear per weld using E70 electrodes from AISC Table J2.5, is 2.46 kips/in.

The total length of weld required to develop the force in each rod = 6.37 / 2.46 = 2.59 in.

2007 Structures Congress May 17-19 Long Beach CA

Design Approaches for Modifying Joists - Shortening and Lengthening Steps to Shorten Open Web Steel Joists

- Determine the original web layout 1.
 - a. Top chord end panel length
 - b. Interior panel length
 - c. Number of panels
- 2. Determine where shortened length occurs relative to top chord panels
 - a. New end web originates from a bottom chord panel point
 - b. Placement angle should be 45 to 70 degrees
- 3. Determine the loading at the shortened length

2007 Structures Congress May 17-19 Long Beach CA

TD12 - 105

