

Roof Design with Special Profile Joists

NOVEMBER 17, 2021

Copyright © 2021 Steel Joist Institute. All Rights Reserved.

Presented by:

Ben Pitchford, P.E.

Doug Hoffman, P.E.

Polling Question

- New requirement to earn PDH credits
- Two questions will be asked during the duration of today's presentation
- The question will appear within the polling section of your GoToWebinar control panel to respond
- Please be sure that your pop-up blocker is disabled. If you're in full-screen mode, the GoToWebinar polling widget will appear behind the slides. You'll need to exit full screen to be able to access.

Disclaimer

The information presented herein is designed to be used by licensed professional engineers and architects who are competent to make a professional assessment of its accuracy, suitability and applicability. The information presented herein has been developed by the Steel Joist Institute and is produced in accordance with recognized engineering principles. The SJI and its committees have made a concerted effort to present accurate, reliable, and useful information on the design of steel joists and Joist Girders. The presentation of the material contained herein is not intended as a representation or warranty on the part of the Steel Joist Institute. Any person making use of this information does so at one's own risk and assumes all liability arising from such use.

Webinar Description

Steel joists and Joist Girders can be used to construct more than just flat roofs. This session will provide designers with details and design guidance for using Special Profile Steel Joists in these situations. Direction will be provided for designing and detailing Special Profile Steel Joists, particularly in pitched roofs, curved roofs, and hip roof framing. We will also examine best practices when using Special Profile Steel Joists.

Learning Objectives

- 1. Identify the unique considerations for designing and specifying steel joists and Joist Girders with pitched chords, including hip roof framing.
- 2. Identify the unique considerations for designing and specifying steel joists and Joist Girders with radiused chords.
- 3. Describe the factors that impact special profile steel joists and Joist Girders.
- 4. Summarize the general concerns with using special profile steel joists and Joist Girders.

Roof Design with Special Profile Joists

- Standards SJI Shapes
- Sloped Seats
- Pitched Top Chords
- Joists in a Hip Roof
- Special Profile Joists

Specialty Shapes

What makes them special?

Not a standard shape

Standard SJI Shapes

- K: 10" 30" deep, up to 60' long
- LH: 18" 48" deep, up to 96' long
- DLH: 52" 120" deep, up to 240' long

Joist Girders: 20" – 120" deep, up to 120' long

Standard SJI Shapes

Most common is parallel chord

Used in floors and flat roofs

Standard SJI Shapes

Most common is parallel chord

Also used in sloped roofs with low and high supports

Where steel joists or Joist Girders are sloped, the end bearing, or seats, may also be sloped

For K-Series Joists, seats are permitted to **not** be beveled for slopes of 1/4 inch or less per foot

JOIST SEATS NOT SLOPED

STEEL JOIS

When sloped seats are required, the seat depths shall be adjusted to maintain standard height at the shallow end of the sloped seat

SJI publishes these requirements in:

Table 2.2-2 and 2.2-3

TABLE 2.2-2

SLOPED SEAT REQUIRMENTS FOR SLOPES 3/8":12 AND GREATER K-SERIES OPEN WEB STEEL JOISTS

TABLE 2.2-3

SLOPED SEAT REQUIRMENTS FOR SLOPES 3/8":12 AND GREATER LH- AND DLH-SERIES OPEN WEB STEEL JOISTS

Most common is parallel chord

EEL JOI

Specialty Shapes

Pitched Chords

Arched (Curved) Chords

Four standard types of joists with pitched top chords:

Double Pitch

Single Pitch

TOP CHORD PITCHED TWO WAYS, UNDERSLUNG

TOP CHORD PITCHED ONE WAY, UNDERSLUNG

TOP CHORD PITCHED TWO WAYS, SQUARE ENDS

TOP CHORD PITCHED ONE WAY, SQUARE ENDS

Web systems shown are examples, and vary by manufacturer

Specifying a joist with a Double Pitched top chord

What depth is used to specify the joist?

Double pitch joist designation depth is at the <u>ridge</u>.

DOUBLE PITCH JOIST

TEEL JOID

Specifying a joist with a Single Pitched top chord

What is the joist depth?

Single Pitch

TOP CHORD PITCHED ONE WAY, SQUARE ENDS

Single pitch joist designation depth is at <u>mid-span</u>.

SINGLE PITCH JOIST

STEEL JOIS

It is critical that structural drawings provide all necessary dimensions and joists depths.

Special requirements for web-layouts must be specified as well.

A note about SJI designations

STANDARD LOAD TABLE FOR OPEN WEB STEEL JOISTS, K-SERIES Based on a 50 ksi Maximum Yield Strength - Loads Shown In Pounds Per Linear Foot (plf)														
Joist Designation	28K6 28K7 28K8 28K9 28K10 28K12 30K7 30K8 30K9 30K10 30K11										30K11	30K12		
Depth (In.)	28	28	28	28	28	28	30	30	30	30	30	30		
Approx. Wt. (Ibs./ft.)	8.9	9.2	9.8	10.5	11.8	14.5	9.6	10.0	10.6	11.9	13.3	15.0		
Span (ft.) ↓														
27	550	550	550	550	550	550								
	550	550	550	550	550	550								
28	548	550	550	550	550	550								
	541	543	543	543	543	543			2	8	1	1		
29	511	550	550	550	550	550	550	550	550	550	550	550		
	486	522	522	522	522	522	550	550	550	550	550	550		
30	477	531	550	550	550	550	550	550	550	550	550	550		
	439	486	500	500	500	500	543	543	543	543	543	543		
04	110	407	==0	==0		550	504	==0	==0	==0	==0	==0		

"The Load Table applies to joists with either parallel chords or pitched top chords. Joists can have a top <u>chord pitch up to 1/2 inch per foot.</u> If the pitch exceeds this limit, the Load Table does **not** apply."

Design Example:

100' span & 10' spacing

Top chord sloped at 1/2 : 12

Bottom chord flat (Architectural requirement)

End Depths = 31" & 81"

Mid-Span Depth 56" ---- DESIGNATION DEPTH

Total Load = 40 psf

Design Example:

Designate a Single Pitch DLH-Series joist

SINGLE PITCH JOIST

Design Example:

40 psf @ 10' Spacing = 400 plf Total Load

			<67	67-97	98	99	100
56DLH11	26	56	421	28200	288	283	277
					169	163	158
56DLH12	30	56	484	32400	331	324	318
					184	178	173
56DLH13	34	56	586	39240	401	394	386
					223	216	209
56DLH14	39	56	662	44360	453	444	435
					249	242	234
50DLH15	42	56	756	50680	518	508	409
		5			281	272	264
56DLH16	46	56	816	54680	559	548	537
					313	304	294

Select 56DLH14: 435 plf > 400 plf

Design Example:

Check seat depths - Top chord sloped at 1/2 : 12 Low End = 5" minimum

Design Example:

Check seat depths - Top chord sloped at 1/2 : 12

Low End = 5'' minimum

High End = 6" minimum

Design Example:

- Check seat depths Top chord sloped at 1/2 : 12
- Low End = 5" minimum
- High End = 6'' minimum

Specify 6" Seat Depth at both ends for consistency

SUMMARY

Design Example:

56DLH14 spanning 100' @ 10' O.C.

Top Chord Single Pitch, Underslung, TC Slope = 1/2 : 12

Mid-Span: 56"

Shallow End: 31"

Deep End: 81"

SINGLE PITCH JOIST

6" Deep Seats at both ends

What if the top chord slope is greater than 1/2:12?

Instead of an SJI designation, use a 'LOAD / LOAD' designation

	STANDARD WEIGHT TABLE FOR LOAD/LOAD LH-SERIES JOISTS																					
	Based on a 50 ksi Maximum Yield Strength																					
Joist	Joist			Total Uniformly Distributed Joist Load in Pounds per Linear Foot															-			
Span	Depth	LRFD	750	900	1050	1200	1350	1500	1650	1800	1950	2100	2250	2400	2550	2700	2850	3000	3150	3300	3450	3600
[ft]	[in]	ASD	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400
14	14 14 N	Wt.	7.3	7.6	8.1	8.8	9.4	10.6	11.3	12.0	12.3	12.4	13.4	14.2	15.4	15.6	16.0	17.1	17.6	18.8	19.2	19.4
		w360	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400
		lx	71	73	77	80	83	96	98	108	108	114	122	131	137	144	149	161	168	174	182	182
		Pbrg	266	293	332	373	421	484	520	563	563	563	608	658	726	726	726	797	797	891	891	891
		Wt.	6.9	7.4	7.5	8.4	9.3	9.9	10.9	11.9	12.5	12.4 13.4 14.2 15.4 15.6 16.0 17. 1400 1500 1600 1700 1800 1900 200 114 122 131 137 144 149 16 563 608 658 726 726 726 79 13.4 14.0 15.0 15.8 16.2 17.4 18. 1395 1462 1586 1622 1717 1821 188 133 142 153 158 164 176 18	18.1	19.4	19.5	21.3	21.5					
	14	w360	500	600	700	800	900	1000	1100	1200	1286	1395	1462	1586	1622	1717	1821	2850 3000 3150 3300 1900 2000 2100 2200 16.0 17.1 17.6 18.8 1900 2000 2100 2200 149 161 168 174 726 797 797 891 17.4 18.1 19.4 19.5 1821 1894 2007 2032 176 181 197 197 768 768 842 842 16.1 16.5 17.8 17.8 1900 2000 2100 2200 211 220 235 235 641 641 708 708 708	2190	2218		
	14	lx	67	71	71	81	92	97	107	119	125	133	142	153	158	164	176	181	197	197	215	215
16		Pbrg	247	281	284	327	366	418	479	512	549	595	595	643	696	696	768	768	842	842	00 3450 3 00 2300 2 .8 19.2 1 00 2300 2 4 182 1 11 891 8 .5 21.3 2 32 2190 2 77 215 2 .8 18.2 1 .00 2300 2 .5 24.3 2 .8 708 7	941
10		Wt.	7.0	7.0	7.6	7.9	8.8	9.3	9.9	11.2	11.6	12.5	13.2	13.6	14.1	15.0	16.1	16.5	17.8	17.8	18.2	19.3
	16	w360	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400
		Ix	89	89	94	97	112	117	129	143	152	162	170	177	183	196	211	220	235	235	243	252
		Pbrg	228	228	259	286	324	363	385	441	472	506	548	548	548	592	D0 2850 3000 3150 00 1900 2000 2100 .6 16.0 17.1 17.6 00 1900 2000 2100 .6 16.0 17.1 17.6 00 1900 2000 2100 14 149 161 168 16 726 797 797 .2 17.4 18.1 19.4 17 1821 1894 2007 34 176 181 197 36 768 768 842 30 16.1 16.5 17.8 00 1900 2000 2100 36 211 220 235 32 641 641 708	708	708	776		

What if the top chord slope is greater than 1/2:12?

You may also label the joists as "SP" and provide a complete load diagram.

Design Example:

60' span

Top chord sloped at 3 : 12

Double-pitched, bottom chord bearing

Design Example:

Joists at 6' O.C.

LL = 20 psf DL = 20 psf

102DLH240/120

Depth at Ends = 12"

Bridging

Whether a standard SJI designation or a Load/Load designation is used, the number of bridging rows needed is often greater than a standard, parallel-chord joist.

Bridging

If the joist center of gravity is above the supports, **bolted erection bridging** will be required for stability during erection.

Bridging

Based on the overall profile, all rows may need to be **bolted erection bridging.**

BOLTED CROSS BRIDGING

(a) HORIZONTAL BRIDGING UNITS SHALL BE USED IN THE SPACE ADJACENT TO THE WALL TO ALLOW FOR PROPER DEFLECTION OF THE JOIST NEAREST THE WALL.(b) FOR REQUIRED BOLT SIZE REFER TO BRIDGING TABLE.

NOTE: CLIP CONFIGURATION MAY VARY FROM THAT SHOWN.

Bridging

The method of terminating bridging should receive special attention, and requires clear communication.

In many cases, the best approach is to terminate bridging between the last two joists in lieu of attaching to the main structure.

Bridging

When the joist spacing is less than 0.7 x Joist Depth, bolted horizontal bridging shall be used in addition to diagonal bridging.

LH AND DLH SERIES JOISTS HORIZONTAL PLUS DIAGONAL BRIDGING REQUIREMENTS									
JOIST DEPTH	MINIMUM JOIST SPACE FOR DIAGONAL ONLY BRIDGING (0.70 x DEPTH)*	HORIZONTAL AND DIAGONAL MINIMUM ANGLE SIZE REQUIRED FOR JOIST SPACING < (0.70 X DEPTH) ANDJOIST SPANS > 60'-0" (18.3 m)							
in. (mm)	ftin. (mm)	in. (mm)							
52" (1321)	3'- 0" (914)	1" x 1" x 7/64" (25 x 3)							
56" (1422)	3'- 3" (990)	1" x 1" x 7/64" (25 x 3)							
60" (1524)	3'- 6" (1066)	1" x 1" x 7/64" (25 x 3)							
64" (1626)	3'- 8" (1117)	1¼" x 1¼" x 7/64" (32 x 3)							
68" (1727)	3'-11" (1193)	1¼" x 1¼" x 7/64" (32 x 3)							

SQUARE ENDED, BOTTOM BEARING

"Whenever joists are bottom chord bearing, diagonal cross bridging must be installed from joist to joist at or near the bearing location to provide additional lateral erection stability."

Rules of Thumb

For **Square Ends** (Bottom Chord Bearing):

Minimum joist end depth = **12**"

Rules of Thumb

For Square Ends:

Rules of Thumb

For Square Ends (Bottom Chord Bearing):

Minimum joist end depth = 12"

For **Underslung**:

Minimum bearing elevation to bottom chord = 12" That is, Minimum joist end depth = Seat Depth + 12"

Rules of Thumb

For **Underslung**:

A note about SJI designations

	STANDARD LOAD TABLE FOR LONGSPAN STEEL JOISTS, LH-SERIES Based on a 50 ksi Maximum Yield Strength - Loads Shown In Pounds Per Linear Foot (plf)																
Joist Designation	Approx. Wt in Lbs. Per Linear Ft.	Depth in inches	Max Load (plf)	SAFE LOAD* in Lbs. Between	SPAN IN FEET												
	(Joists only)		< 22	22-25	26	27	28	29	30	31	32	33	34	35	36		
18LH02	10	18	553	12160	468 313	442 284	418 259	391 234	367 212	345 193	324 175	306 160	289 147	273 135	259 124		
18LH03	11	18	613	13480	521 348	493 317	467 289	438 262	409 236	382 213	359 194	337 177	317 161	299 148	283 136		
18LH04	12	18	714	15700	604 403	571 367	535 329	500 296	469 266	440 242	413 219	388 200	365 182	344 167	325 153		
18LH05	15	18	806	17740	684 454	648 414	614 378	581 345	543 <mark>311</mark>	508 282	476 256	448 233	421 212	397 195	375 179		
18LH06	15	18	954	20980	809 526	749 469	696 419	648 377	605 340	566 307	531 280	499 254	470 232	443 212	418 195		
18LH07	17	18	990	21780	840 553	809 513	780 476	726 428	678 <mark>386</mark>	635 349	595 317	559 288	526 264	496 241	469 222		

"The Load Table applies to joists with either parallel chords or pitched top chords. Joists can have a top <u>chord pitch up to 1/2 inch per foot.</u> If the pitch exceeds this limit, the Load Table does not apply."

A note about SJI designations...

KCS Joists Shear and Moment Envelopes

A note about SJI designations...

KCS Joists

STANDARD LOAD TABLE FOR KCS OPEN WEB STEEL JOISTS												
Based on a 50 ksi Maximum Yield Strength												
JOIST DESIGNATION	DEPTH (in.)	MOMENT CAPACITY (k-in.)	SHEAR CAPACITY* (lbs)	APPROX. WEIGHT** (lbs/ft.)	GROSS MOMENT OF INERTIA (in. ⁴)	ERECTION STABILITY BRIDGING REQ'D (ft.)	BRIDGING TABLE SECTION NUMBER					
10KCS1	10	172	2000	6.0	29	NA	1					
10KCS2	10	225	2500	7.5	37	NA	1					
10KCS3	10	296	3000	10.0	47	NA	1					
12KCS1	12	209	2400	6.0	43	NA	3					
12KCS2	12	274	3000	8.0	55	NA	5					
12KCS3	12	362	3500	10.0	71	NA	5					
14KCS1	14	247	2900	6.5	59	NA	4					
14KCS2	14	324	3400	8.0	77	NA	6					
14KCS3	14	428	3900	10.0	99	NA	6					

What about maximum joist depths?

Standard SJI designations range up to 120" deep

Most SJI manufacturers can go beyond 120"

However, limits are dependent on a number of factors:

Individual shop capacity

Job site access

Shipping limitations

"PIGGY BACK" GABLE JOIST

"PIGGY BACK" GABLE JOIST

Polling Question #1

What is the maximum allowable top chord pitch of an SJI Designation joist?

- A. Top chord pitch not allowed on SJI Designations
- B. 1/4:12
- C. 1/2:12
- D. There is no limit

• Joists can also be used for greater sloped hip roofs

• This is common in schools, particularly over gymnasiums and auditoriums

Steel Joists used for 4:12 Hip Roof on School

Using Steel Joists in a hip roof can be an economical option

This is most commonly done using **Double** and **Triple Pitch** Steel Joists

TEEL JOIS

SJI SJI

Pitched Top Chords

This method can be used with low slope, such as often done for drainage

When the building shape is simple, this can be more economical than building up insulation

SJI SJI

Joists in a Hip Roof

SJI SJI

Joists in a Hip Roof

• When roof overhangs are needed, Steel Joists can be turned 90 degrees at building ends

 These bear on a Hip Support member, which can be a Joist Girder or Beam

• Top chord extensions create the overhang

 Coordination is required at connection of Hip Support member to Triple Pitch Joist

• A simpler solution is to bear the **Hip Support** member on top of the **Triple Pitch** Joist

 Contact your preferred local Joist Manufacturer to discuss connection details and preferences

Special Profile Joists

There are four generally accepted Special Profiles:

- Bowstring
- Arch
- Gable
- Scissor

Special Profile Joists

BOWSTRING JOIST

TEEL JOI

GABLE JOIST

TEEL JOIN

OFFSET RIDGE BOWSTRING JOIST

Pitched Top Chords

Many Joist Manufacturers can provide more than two pitched chords

Most common is Triple Pitch

Contact your preferred local Joist Manufacturer to discuss their capabilities

Pitched Top Chords

TRIPLE PITCH JOIST

TEEL JOID

Pitched Top Chords

SJI SJI

SCISSOR JOIST

TEEL JOI

ARCH JOIST

TEEL JOI

82

Of Special Profile Joists, **Gable Joists** are typically the most cost effective to manufacture

Scissor or Arch Joists should only be used if the additional clearance is needed below the joist, often for aesthetic reasons

When using Scissor or Arch Joists, there is a...

Scissor and Arch Joists may create a horizontal reaction on the structure

To remove this **thrust force**, a <u>slip connection</u> should be used at one end (<u>roller</u> support)

Note that diaphragm forces collected in the joist top chord must transfer through the pinned end of the joist

Other Considerations...

Other Considerations...

Other Considerations...

Other Considerations...

Other Considerations...

Special Profiles Joists are typically fabricated with:

SJI SJI

SJI SJI

Deep joists often have chords controlled by minimum sizes for handling, rather than load requirements

Consider using a 3" deep roof deck to allow greater joist spacing and better utilization of deep joist capacity.

- Clearly specify all geometric requirements of the joists on the contract documents.
- Use LOAD/LOAD designations when a design is beyond the standard SJI designation range. Where additional load requirements exist, provide a complete load diagram.

- Standard SJI camber may not ideal for the project application. Consider the transition between areas with special profile joists and adjacent areas. Specify zero camber or specific camber requirements as needed.
- Specify the means of bridging termination. If needed, the joist manufacturer can provide termination bridging in the last space between joists, to avoid terminating at adjacent framing.

- Specify structural bracing in lieu of joist bridging when the bracing is intended to do more than provide lateral support to the joists under self-weight, weight of erectors, deck, bridging bundles, etc.
- Coordinate support boundary conditions with the joist manufacturer when specifying joists that exert a horizontal thrust at the support, such as arch or scissor joists.

Check Out Our Resources

SJI offers a number of resources including:

- Design tools
- Publications
- Live webinars
 - Our next live webinar will be on December 15, 2021 3:00 p.m. EST
 - Ethics, Laws and Regulations
- Webinars on demand
 - Our Webinars on Demand section offers 40+ pre-recorded webinars.
 Earn PDHs today.

Polling Question #2

Special profile joists with pitched or curved bottom chords (scissor or arch) have what additional design requirement?

- A. The joist-to-joists spacing can not exceed the joist depth
- B. The joists can be erected without any bridging
- C. Supports must resist the horizontal thrust or movement
- D. The joists can only span up to 60'

Q&A SESSION

STEEL JOIS

THANK YOU

Copyright © 2021 Steel Joist Institute. All Rights Reserved.

Presented by:

Ben Pitchford, P.E.

Doug Hoffman, P.E.