Design of Steel Deck for Concentrated and Non-Uniform Loading

JUNE 20, 2018

Presented by:
Cody Trueblood, New Millennium
Mike Antici, NUCOR

Copyright © 2018 Steel Joist Institute. All Rights Reserved.
Polling Question

- New requirement to earn PDH credits
- Two questions will be asked during the duration of today’s presentation
- The question will appear within the polling section of your GoToWebinar Control Panel to respond
Disclaimer

The information presented herein is designed to be used by licensed professional engineers and architects who are competent to make a professional assessment of its accuracy, suitability and applicability. The information presented herein has been developed by the Steel Joist Institute and is produced in accordance with recognized engineering principles. The SJI and its committees have made a concerted effort to present accurate, reliable, and useful information on the design of steel joists and Joist Girders. The presentation of the material contained herein is not intended as a representation or warranty on the part of the Steel Joist Institute. Any person making use of this information does so at one’s own risk and assumes all liability arising from such use.
Learning Objectives

- Recognize load cases that require additional analysis beyond distribution as a uniform load.
- Understand the limit states for design under concentrated loads.
- Examine different load paths for varying concentrated load conditions.
- Review current and NEW SDI design methodology for concentrated and cluster loads.
- Demonstrate potential shortcuts to concentrated load design.
- Present example problems for design with concentrated loads.
Presentation Outline

- Identify Typical Deck Types
- Introduction to Concentrated Load Types
- Roof Deck Limit States and Design Example
- Floor Deck Limit States and Current Design Methodology
- Composite Deck Design Examples – Shortcuts for Multiple Loads
- Form Deck and Steel Fibers
Deck Types

Roof Deck
- Permanent Structural Member
- No Concrete Topping

Composite Deck
- Deck and Concrete Work Together
- Embossments – Composite Action

Form Deck
- Deck is Permanent Form
- Deck Often Carries Slab Weight
Concentrated Loads on Roof Deck

Safety Anchors

Roof Drains

Suspended Loads

Solar Panels
Concentrated Loads on Roof Deck

- People
- Dollies
- Pallets
- Tool Chests
- Roofing Machinery
Concentrated Loads on Floor Deck

Storage Racks
Concentrated Loads on Floor Deck

Wall Loads

Parallel

Transverse
Concentrated Loads on Floor Deck

Equipment Loads
Available at www.sdi.org
Roof Deck Design Limit States

- Shear
- Bending
- Bending/Shear Interaction
- Web Crippling
- Deflection
Roof Deck – Transverse Distribution

Based on 1 ½” Deck...

\[L = \text{Span} \quad X = \% \text{ of Span} \]

For \(X \leq 0.25 \)
\[b_e = B + 6 \geq 12 \]

For \(0.25 < X \leq 0.50 \)
\[b_e = B + 18 - \frac{3}{X} \geq 24 - \frac{3}{X} \]

Where:

\(B = \) load footprint width transverse to the deck span. When the load centroid is not at the center of the footprint, let \(B \) equal twice the least dimension from the centroid to the baseplate edge; inches.

\(b_e = \) effective distribution width; inches

\(X = \) percentage of span, measured from the nearest support to the center of the concentrated load, \(\leq 0.50 \)
Roof Deck Design Example

Example 7 From RDDM...

Given: Select a WR deck to support the roof load condition below. Use an ASD solution. Combine loads using ASCE 7-10.

1. Uniform Dead Load = 10 psf
2. Uniform Live Load = 20 psf
3. Concentrated Dead Load = 700 lbs on baseplate
 - Baseplate size is 24 inches parallel to deck span and 30 inches perpendicular to deck span
 - Deck End Bearing Length = 1.5 inch
 - Deck Interior Bearing Length = 3 inch
Roof Deck Design Example

\[L = \text{Span} \]
\[X = \% \text{ of Span} \]

For \(X \leq 0.25 \)
\[b_e = B + 6 \geq 12 \]

For \(0.25 < X \leq 0.50 \)
\[b_e = B + 18 - \frac{3}{X} \geq 24 - \frac{3}{X} \]

Calculate the transverse distribution of the concentrated load using the procedure found in Section 2.5.

\[L = 8 \text{ ft} \quad XL = 3 \text{ ft} \quad X = 0.375 \]

\[b_e = B + 18 - \frac{3}{X} \geq 24 - \frac{3}{X} \]

\[= 30 + 18 - \frac{3}{0.375} \geq 24 - \frac{3}{0.375} \]
\[= 40 \text{ inch} \geq 16 \text{ inch} \]

Therefore the 40 inch dimension controls the transverse distribution.
Roof Deck Design Example

P = 210 lb

W = 30 lb/ft

8'-0"

Concentrated Load is converted to a line load as 700 lbs × 12 / 40 = 210 plf.

From a structural analysis using w = 30 plf and P = 210 lbs, the maximum moments and shears are found in the middle span:

- \(M_n = 3918 \text{ inch-lbs at the left support} \)
- \(M_p = 3632 \text{ inch-lbs under the concentrated load} \)
- \(V = 255 \text{ lbs at the left support} \)
- \(R_{\text{INTERIOR}} = 416 \text{ lbs at the left support (OFI)} \)
- \(R_{\text{EXTERIOR}} = 83 \text{ lbs at the right support of the 3rd span (OFE)} \)
Roof Deck Design Example

Table 1 – Section Properties and Flexural Resistance

<table>
<thead>
<tr>
<th>Profile</th>
<th>Gage Number</th>
<th>Design Thickness (inches)</th>
<th>I_p (inch4)</th>
<th>I_n (inch4)</th>
<th>S_p (inch3)</th>
<th>S_n (inch3)</th>
<th>M_p/Ω inch-lbs</th>
<th>M_n/Ω inch-lbs</th>
<th>ΦM_p inch-lbs</th>
<th>ΦM_n inch-lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>WR</td>
<td>22</td>
<td>0.0295</td>
<td>0.1473</td>
<td>0.1732</td>
<td>0.1713</td>
<td>0.1804</td>
<td>3385</td>
<td>3565</td>
<td>5088</td>
<td>5358</td>
</tr>
<tr>
<td>WR</td>
<td>20</td>
<td>0.0358</td>
<td>0.1910</td>
<td>0.2104</td>
<td>0.2122</td>
<td>0.2247</td>
<td>4193</td>
<td>4440</td>
<td>6302</td>
<td>6674</td>
</tr>
<tr>
<td>WR</td>
<td>18</td>
<td>0.0474</td>
<td>0.2741</td>
<td>0.2791</td>
<td>0.2883</td>
<td>0.2963</td>
<td>5697</td>
<td>5855</td>
<td>8563</td>
<td>8800</td>
</tr>
<tr>
<td>WR</td>
<td>16</td>
<td>0.0598</td>
<td>0.3528</td>
<td>0.3528</td>
<td>0.3695</td>
<td>0.3722</td>
<td>7301</td>
<td>7355</td>
<td>10974</td>
<td>11054</td>
</tr>
</tbody>
</table>

Table 6 – Shear and Web Crippling Strength

<table>
<thead>
<tr>
<th>Profile</th>
<th>Gage Number</th>
<th>Shear (lbs)</th>
<th>ASD (lbs)</th>
<th>Web Crippling</th>
<th>LRFD (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ASD $\Omega = 1.60$</td>
<td>LRFD $\Phi=0.95$</td>
<td>$\Omega = 1.70$</td>
<td>$\Omega = 1.75$</td>
</tr>
<tr>
<td>NR. IR, WR</td>
<td>22</td>
<td>1325</td>
<td>2014</td>
<td>541</td>
<td>857</td>
</tr>
<tr>
<td>NR. IR, WR</td>
<td>20</td>
<td>1588</td>
<td>2413</td>
<td>773</td>
<td>1248</td>
</tr>
<tr>
<td>NR. IR, WR</td>
<td>18</td>
<td>2068</td>
<td>3144</td>
<td>1314</td>
<td>2171</td>
</tr>
<tr>
<td>NR. IR, WR</td>
<td>16</td>
<td>2523</td>
<td>3835</td>
<td>1981</td>
<td>3322</td>
</tr>
<tr>
<td>DR</td>
<td>22</td>
<td>2224</td>
<td>3380</td>
<td>366</td>
<td>737</td>
</tr>
<tr>
<td>DR</td>
<td>20</td>
<td>3123</td>
<td>4747</td>
<td>528</td>
<td>1067</td>
</tr>
<tr>
<td>DR</td>
<td>18</td>
<td>4129</td>
<td>6276</td>
<td>910</td>
<td>1845</td>
</tr>
<tr>
<td>DR</td>
<td>16</td>
<td>5115</td>
<td>7775</td>
<td>1385</td>
<td>2809</td>
</tr>
</tbody>
</table>
Roof Deck Design Example

Try WR20

For this condition,

\[
\frac{M_n}{\Omega} = 4440 \text{ inch-lbs (Table 1)} \quad > \quad 3918 \text{ inch-lbs} \quad \text{OK}
\]

\[
\frac{M_p}{\Omega} = 4193 \text{ inch-lbs (Table 1)} \quad > \quad 3632 \text{ inch-lbs} \quad \text{OK}
\]

\[
V_{ALLOW} = 1588 \text{ lbs (Table 6)} \quad > \quad 255 \text{ lbs} \quad \text{OK}
\]

Allowable Web Crippling, (Table 6)

\[
\text{OFE} = 773 \text{ lbs (1.5 inch min.)} \quad > \quad 83 \text{ lbs} \quad \text{OK}
\]

\[
\text{OFl} = 1248 \text{ lbs (2.5 inch min.)} \quad > \quad 416 \text{ lbs} \quad \text{OK}
\]

Therefore,

\[
\sqrt{\left(\frac{V}{V_a} \right)^2 + \left(\frac{M}{M_a} \right)^2} = \sqrt{\left(\frac{255}{1588} \right)^2 + \left(\frac{3918}{4440} \right)^2} = 0.897 \leq 1.0 \quad \text{OK}
\]

Result:

WR20 deck is acceptable for this condition.
Floor Deck Design Standards/Manual

Available at www.sdi.org
Floor Deck Design Limit States

- V_n: One Way Beam Shear
- M_y: Bending (+ if simple span, +/- if multiple span)
- V_{pr}: Punching Shear - unlikely to govern
- Δ: Deflection - unlikely to govern
- M_w: Transverse (Weak axis) Bending
- M_n, M_r: Proprietary Deck-Slab Bending (no studs)
Floor Deck Load Distribution

(weak) W b_e
Current SDI Load Distribution

SDI FDDM/C-2017

\[b_m = b_2 + 2t_c + 2t_t \]
\[b_e = b_m + 2 \left(1 - \frac{x}{L} \right) x \] Wheel/Baseplate Distribution 2.4.10
\[b_e = b_m + \frac{4}{3} \left(1 - \frac{x}{L} \right) x \] Single Span Positive Bending 2.4.11
\[b_{ve} = b_m + \left(1 - \frac{h}{L} \right) x \] Continuous Span Positive Bending 2.4.12
\[w = \frac{L}{2} + b_3 < L \] Beam Shear 2.4.13
\[w = \frac{L}{2} + b_3 < L \] Transverse Bending 2.4.14
Polling Question #1

Which Limit State is NOT Applicable for Designing Concentrated Loads on Concrete Slabs on FLOOR Deck?

a) Weak Axis Bending
b) Web Crippling
c) Punching Shear
d) Positive Bending
e) Negative Bending
Can We Solve This Load Diagram?

Cluster (multiple) loads.
Simple beam loading diagram.
Known engineering mechanics.
 • Shear
 • Bending
 • Deflection

Use traditional engineering mechanics to solve complex cluster analysis.
Cluster Loads

Adjacent Loads, M_y, V_n, Δ

$$b_e' = \frac{b_e + \text{Adjacent load spacing}}{2} \leq b_e$$

In–Line Loads, M_w

$$M_w = \left(\frac{P}{w} + \frac{P(\text{Lap})}{w^2} \right) \frac{12 b_e}{15}$$

Adjacent Loads, M_w

$$M_x = 5.5 M_1 \left[\frac{x}{b_e} - \frac{1}{\pi} \sin \left(\frac{\pi x}{b_e} \right) \right] \text{rad}$$
In-line loads act simultaneously on a 1’ effective width.

Use P/b_e model and simple span beam for M_y, V_n, Δ.

Use New “Lap” equation for M_w.

2 Loads “In-Line”
Distribute loads using associated effective widths, b_{e1} and b_{e2}.

P_1 and P_2 are typically equal, but P/b_e ratios differ.

Simple beam analysis for M_y, V_n, Δ.

Solve for desired variable; a, b, L, P.

2 Loads “In-Line”, M_y, V_n, Δ
2 Loads “In-Line”, M_y
2 Loads “In-Line”, V_n
Do influence zones overlap?

- If no, use existing SDI procedures for a single concentrated load.
- If yes, use new “Lap” equation to correct for “w” overlap.
The great advantage to this equation is “IT WORKS EVERYWHERE” regardless of the overlap. \(\phi_w = 0.75, \Omega_w = 2.0 \)
2 Loads “In-Line”, Scaffold

LAP = 2.33’ (use 2.0’)

- 2 x 12 x 20
- 8-0 span
- 5” NW slab (t = 3”)
- W6xW6-W2.1xW2.1
- d = 1.5”
- Scaffold post, b = 4”

- \(W_L = 0 \)
- \(W_d = (1.2) 52 \text{ psf} \)
- \(\phi M_y = 4140 \text{ ft-lbs/ft} \)
- \(\phi V_n = 5116 \text{ lb/ft} \)
- \(\phi w M_w = 2757 \text{ in-lb/ft} \)

Typical slab capacities for bending and shear from SDI FDDM.

Weak axis bending capacity, 2757 in-lb/ft, calculated.

Why is LRFD desirable?
2 Loads “In-Line”, Scaffold, M_y, V_n, Δ

FP$_1$
\[
\frac{3.30}{FP_1}
\]

FP$_2$
\[
\frac{4.78}{FP_2}
\]

FP = 33822 lbs
FP = 13377 lbs
FP = 7029 lbs
FP = 5470 lbs
2 Loads “In-Line”, Scaffold, M_w

\[
\frac{FP}{W} = \frac{FP}{4.33}
\]

\[
b_{e\text{ max}} = 4.78'
\]

1. Distribute P over an effective width “w”, not “b_e”.
2. The weak axis beam length = b_e and will differ for P_1 and P_2. Use $b_{e\text{ max}}$
3. Use the new ϕM_w to correct for influence zone overlap.
4. Use $\phi_w = 0.75$ and $\Omega_w = 2.0$ (not ACI factors)

\[
\Phi M_w = \left(\frac{FP}{w} + \frac{FP(\text{Lap})}{w^2}\right) b_e \frac{12}{15}
\]

\[
M_{w@P2} = 2757 = \left(\frac{12FP}{4.33} + \frac{12FP(2.0)}{4.33^2}\right) \left(\frac{4.78}{15}\right)
\]

• $FP = 2135$ lbs
2 Loads “Adjacent”

Do influence zones overlap?

• If no, use existing SDI procedures for a single concentrated load.
• If yes, use **New** P/b_e model for M_y, V_n, Δ “don’t use concrete twice”.
• If yes, use **New** $M_x\sin$ equation with M_w.
2 Loads “Adjacent”, M_y, V_n, Δ

\[\frac{P}{b_e'} \]

\[a \quad \quad b \]

\[b'_e = \frac{b_e + \text{Adjacent load spacing}}{2} \leq b_e \]

NEW
Overlapping adjacent influence zones may result in cumulative weak axis bending moments, and traditional SDI mechanics may not be appropriate for a two-way slab problem with sinusoidal stress distribution.

To demonstrate, the next 3 slides show the effects of load spacing and superposition.
2 Loads “Adjacent”, M_w

b_e overlap < load spacing

Load Locations Along b_e, ft

M_w, ft-lbs

M_{WP_2}, M_{WP_1}, ΣM

P/w
2 Loads “Adjacent”, M_w

Load Locations Along b_e, ft

- M_{wn}
- M_{wp1}
- M_{wp2}
- ΣM

b_e overlap > load spacing

p/w
2 Loads “Adjacent”, M_w

$$b_e \text{ overlap } \gg \text{load spacing}$$

$$M_w = 5.5 M_1 \left[\frac{x}{b_e} - \frac{1}{\pi} \sin \left(\frac{\pi x}{b_e} \right) \right] \text{ rad}$$
2 Loads “Adjacent”, Scaffold

- 2 x 12 x 20
- 8-0 span
- 5” NW slab (t = 3”)
- W6xW6-W2.1xW2.1
- d = 1.5”
- Scaffold post, b = 4”

\[W_L = 0 \]
\[W_d = (1.2) 52 \text{ psf} \]
\[\phi M_y = 4140 \text{ ft-lbs/ft} \]
\[\phi V_n = 5116 \text{ lb/ft} \]
\[\phi M_w = 2757 \text{ in-lb/ft} \]

\[b_e' = \left(\frac{b_e + \text{load spacing}}{2} \right) = \left(\frac{4.78 + 1.5}{2} \right) = 3.14 \text{ ft} \]
2 Loads “Adjacent”, Scaffold M_y, V_n, Δ

- $b_e = 4.78$ ft
- $b_e' = 3.14$ ft
- $W = 4.33$ ft
- $W_d = 62$ psf

$FP_1 = \frac{3.14}{3.14}$

$R_R = 5116$ lbs = $\frac{62 \text{ plf} \times (8 \text{ ft})}{2} + \frac{FP \times (3.5 \text{ ft})}{3.14 \text{ ft} \times 8 \text{ ft}}$

$R_L = 5116$ lbs = $\frac{62 \text{ plf} \times (8 \text{ ft})}{2} + \frac{FP \times (4.5 \text{ ft})}{3.14 \text{ ft} \times 8 \text{ ft}}$

$M_{@P} = 4140 \frac{\text{ ft } - \text{ lbs}}{\text{ ft}} = \frac{62 \text{ plf} \times (3.5 \text{ ft}) \times (4.5 \text{ ft})}{2} + \frac{FP \times (4.5 \text{ ft}) \times (3.5 \text{ ft})}{(3.14 \text{ ft}) \times 8 \text{ ft}}$

- $FP = 34938$ lbs
- $FP = 27174$ lbs
- $FP = 5824$ lbs
2 Loads “Adjacent”, Scaffold M_w

$$\phi M_1 = \frac{12FP}{w} \left(\frac{b_e}{15} \right)$$

Load P develops a sinusoidal moment envelope over a beam length = b_e resisted by the available weak axis bending moment = ϕM_w and $\phi M_w < \phi M_n$
2 Loads “Adjacent”, Scaffold \(M_w \)

\[
\Phi M_1 = \frac{12FP}{w} \left(\frac{b_e}{15} \right)
\]

\[
M_x = 5.5 \Phi M_1 \left[\frac{x}{b_e} - \frac{1}{\pi} \sin \left(\frac{\pi x}{b_e} \right) \right] \text{ rad}
\]

The adjacent load \(P \) develops a similar moment curve. In this example, we are interested in the weak axis moment at \(x = 0.65' \).
2 Loads “Adjacent”, Scaffold M_w

\[\Phi M_1 = \frac{12FP}{w} \left(\frac{b_e}{15} \right) \]

\[M_{x=0.65} \]

\[\Sigma M_n < 2757 \]

\[2757 \frac{\text{in}-\text{lbs}}{\text{ft}} = \frac{12FP}{4.33 \frac{\text{ft}}{15}} \left(\frac{4.78 \text{ ft}}{15} \right) + 5.5 \left[\frac{12FP}{4.33 \frac{\text{ft}}{15}} \left(\frac{4.78 \text{ ft}}{15} \right) \right] \left[\frac{0.65 \text{ ft}}{4.78 \text{ ft}} - \frac{1}{\pi} \sin \left(\frac{\pi (0.65 \text{ ft})}{4.78 \text{ ft}} \right) \right] \text{ rad} \]

FP = 2977 lbs

Focus on the picture, not the equation.
4 Loads “In-Line” and “Adjacent”

You guessed it . . . 4 loads . . . “In-line” and “adjacent”.
“What size lift can this floor support?”

Slab (FDDM Example 4)
- 2 x 12 composite deck
- 20 gage
- 4 ½” total depth
- 3 ksi NW concrete
- 9-0 clear span
- 25 psf concurrent LL
- 6x6 – W2.1xW2.1 WWR
- d = 1.25"

Assumed Lift
- 52“ length
- 30“ width
- 12” x 4.5“ tires
- 2.5 mph
As a general rule for scissor lift shear, one tire near the support and smaller lift dimension “adjacent”.

Example Problem, V_n

\[b_{e1} = 1.12 \text{ ft} \]
\[b_{e2} = 4.94 \text{ ft} \]
\[b_{e2}' = 3.8 \text{ ft} \]
Example Problem, V_n

$$R_R = 4715 \text{ lbs} = \frac{53 \text{ plf (9 ft)}}{2} + \frac{25 \text{ plf(1.6)(9 ft)}}{2} + \frac{\text{FP}}{1.12 \text{ ft}} \left(\frac{0.17 \text{ ft}}{9 \text{ ft}} \right) + \frac{\text{FP}}{3.8 \text{ ft}} \left(\frac{4.5 \text{ ft}}{9 \text{ ft}} \right)$$

FP = 28943 lbs

$$R_L = 4715 \text{ lbs} = \frac{53 \text{ plf (9 ft)}}{2} + \frac{25 \text{ plf(1.6)(9 ft)}}{2} + \frac{\text{FP}}{1.12 \text{ ft}} \left(\frac{8.83 \text{ ft}}{9 \text{ ft}} \right) + \frac{\text{FP}}{3.8 \text{ ft}} \left(\frac{4.5 \text{ ft}}{9 \text{ ft}} \right)$$

FP = 4264 lbs
AISC 15th 3-223 – Maximum bending occurs when \(x = b \) or when the larger load is over the center of gravity of all loads. So, where is C.G.?

We know \(M_{\text{max}} \) should be near midspan. Is this close enough?
As a general rule for scissor lift bending, one tire at midspan is reasonable, but $a = 0.45L$ is more accurate. Smaller lift dimension “in-line”, but check rotated 90°.
Example Problem, \(M_y \)

\[
\begin{align*}
FP_1 &= 3.90 \\
FP_2 &= 4.64 \\
2.0' &\quad 2.5' &\quad 4.5'
\end{align*}
\]

\[
M_{@P1} = 3511 \frac{\text{ft} - \text{lbs}}{\text{ft}} = \left(\frac{53 \text{ plf} + 25 \text{ plf}(1.6)}{2} \right) (2.0 \text{ ft})(7.0 \text{ ft}) + \frac{FP(2.0 \text{ ft})(7.0 \text{ ft})}{(3.9 \text{ ft})9 \text{ ft}} + \frac{FP(4.5 \text{ ft})(2.0 \text{ ft})}{(4.64 \text{ ft})9 \text{ ft}}
\]

\[FP = 4655 \text{ lbs}\]

\[
M_{@P2} = 3511 \frac{\text{ft} - \text{lbs}}{\text{ft}} = \left(\frac{53 \text{ plf} + 25 \text{ plf}(1.6)}{2} \right) (4.5 \text{ ft})(4.5 \text{ ft}) + \frac{FP(2.0 \text{ ft})(4.5 \text{ ft})}{(3.9 \text{ ft})9 \text{ ft}} + \frac{FP(4.5 \text{ ft})(4.5 \text{ ft})}{(4.64 \text{ ft})9 \text{ ft}}
\]

\[FP = 3465 \text{ lbs}\]

Computer model, FP = 3410 lbs
Example Problem, M_w

As a general rule for scissor lift weak axis, same lift location and orientation as M_y.

$b_{\text{emax}} = 4.94$ ft
$w = 4.88$ ft
$Lap = 2.38$ ft
Example Problem, M_w

\[\Phi_w M_1 = \left(\frac{FP}{w} + \frac{FP(Lap)}{w^2} \right) \frac{12b_{emax}}{15} \]

Correction for "in – line" overlap

\[\Phi_w M_x = 5.5[\Phi_w M_1]\left[\frac{x}{b_{emax}} - \frac{1}{\pi} \sin \left(\frac{\pi x}{b_{emax}} \right) \right] \]

Correction for "adjacent" overlap

\[x = \frac{b_{emax}}{2} - \text{Adjacent Load spacing} > 0 \]

\[\Phi_w M_w = \Phi_w M_1 + \Phi_w M_x \]

Moments are cumulative at x

\[\Phi_w M_w = \left(\frac{FP}{w} + \frac{FP(Lap)}{w^2} \right) \frac{12b_{emax}}{15} + 5.5 \left[\left(\frac{FP}{w} + \frac{FP(Lap)}{w^2} \right) \frac{12b_{emax}}{15} \right] \left[\frac{x}{b_{emax}} - \frac{1}{\pi} \sin \left(\frac{\pi x}{b_{emax}} \right) \right] \]
Example Problem, M_W

\[
x = \frac{b_{\text{emax}}}{2} - \text{Adjacent Load spacing} > 0 = \frac{4.94'}{2} - \frac{52''}{12} = -1.86'
\]

Use $x = 0$
Example Problem, M_w

\[
\Phi_wM_w = \left(\frac{FP}{w} + \frac{FP(Lap)}{w^2}\right) \frac{12b_{e_{\text{max}}}}{15} + 5.5 \left[\left(\frac{FP}{w} + \frac{FP(Lap)}{w^2}\right) \frac{12b_{e_{\text{max}}}}{15}\right] \frac{x}{b_{e_{\text{max}}}} - \frac{1}{\pi} \sin \left(\frac{\pi x}{b_{e_{\text{max}}}}\right)
\]

Typical for scissor lifts

\[
2285 \text{ in} - \frac{\text{lbs}}{\text{ft}} = \left(\frac{FP}{4.88'} + \frac{FP(2.38')}{4.88'^2}\right) \frac{12(4.94')}{15}
\]

Solve for $FP = 1896$ lbs

Computer model = 1893 lbs

Checks for deflection and punching are not shown, and did not control. Maximum scissor lift wheel load is limited by weak axis bending = 1896 lbs.

What limits do we give the contractor?
Example Answer

FP = 1896 lbs from M_w
If loads are balanced:

Lift = 4FP = 7584 lbs

Impact is unlikely, but possible if platform falls quickly. Try 25% impact.

Lift = 7584/(1.25) = 6067 lbs

In most cases, lift weight far exceeds platform capacity and travels at 2.5 mph. For construction, F = 1.4 is reasonable.

Lift = 6067/(1.4) = 4334 lbs

Product specs from on-line literature,
Weight = 2702 lbs
Capacity = 500 lbs
Total = 3202 lbs < 4334 lbs OK
FDDM Scissor Lift Tables?

1.5 x 6 Composite + 25 psf construction load

<table>
<thead>
<tr>
<th>Slab Gage</th>
<th>WWR</th>
<th>WWR</th>
<th>(\phi_b M_y)</th>
<th>(\phi_w M_w)</th>
<th>(\phi_v V_n)</th>
<th>(\phi_v V_c)</th>
<th>(\phi_P_u) / Simple Span, lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>6x6-W2.1xW2.1</td>
<td>2492</td>
<td>2285</td>
<td>3615</td>
<td>2326</td>
<td>2198</td>
<td>2026</td>
</tr>
<tr>
<td></td>
<td>6x6-W2.9xW2.9</td>
<td>2492</td>
<td>3114</td>
<td>3615</td>
<td>2615</td>
<td>2556</td>
<td>2612</td>
</tr>
<tr>
<td></td>
<td>4x4-W2.9xW2.9</td>
<td>2492</td>
<td>4560</td>
<td>3615</td>
<td>2326</td>
<td>2198</td>
<td>2101</td>
</tr>
<tr>
<td>20</td>
<td>6x6-W2.1xW2.1</td>
<td>2964</td>
<td>2285</td>
<td>3615</td>
<td>2326</td>
<td>2198</td>
<td>2026</td>
</tr>
<tr>
<td></td>
<td>6x6-W2.9xW2.9</td>
<td>2964</td>
<td>3114</td>
<td>3615</td>
<td>2615</td>
<td>2612</td>
<td>2556</td>
</tr>
<tr>
<td></td>
<td>4x4-W2.9xW2.9</td>
<td>2964</td>
<td>4560</td>
<td>3615</td>
<td>2326</td>
<td>2198</td>
<td>2101</td>
</tr>
<tr>
<td>18</td>
<td>6x6-W2.1xW2.1</td>
<td>3822</td>
<td>2285</td>
<td>3615</td>
<td>2326</td>
<td>2198</td>
<td>2026</td>
</tr>
<tr>
<td></td>
<td>6x6-W2.9xW2.9</td>
<td>3822</td>
<td>3114</td>
<td>3615</td>
<td>2615</td>
<td>2612</td>
<td>2556</td>
</tr>
<tr>
<td></td>
<td>4x4-W2.9xW2.9</td>
<td>3822</td>
<td>4650</td>
<td>3615</td>
<td>2326</td>
<td>2198</td>
<td>2101</td>
</tr>
</tbody>
</table>

Capacities above are Ultimate wheel loads. Apply appropriate load, impact or unbalanced factors as applicable.

- WWR located at slab centerline (\(d = t/2 \))
- Positive Bending (\(\phi_b M_y \)), Weak Axis Bending (\(\phi_w M_w \)), Beam Shear (\(\phi_v V_n \) + \(\phi_v V_c \)), Punching Shear (\(\phi_P u \)) and L/360 Deflection (\(\Delta L/360 \))

60" (t=2.5")

<table>
<thead>
<tr>
<th>Slab Gage</th>
<th>WWR</th>
<th>WWR</th>
<th>(\phi_b M_y)</th>
<th>(\phi_w M_w)</th>
<th>(\phi_v V_n)</th>
<th>(\phi_v V_c)</th>
<th>(\phi_P_u) / Simple Span, lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>6x6-W2.1xW2.1</td>
<td>3012</td>
<td>2757</td>
<td>4252</td>
<td>2738</td>
<td>2591</td>
<td>2481</td>
</tr>
<tr>
<td></td>
<td>6x6-W2.9xW2.9</td>
<td>3012</td>
<td>3767</td>
<td>4252</td>
<td>3340</td>
<td>3344</td>
<td>3346</td>
</tr>
<tr>
<td></td>
<td>4x4-W2.9xW2.9</td>
<td>3012</td>
<td>5539</td>
<td>4252</td>
<td>3340</td>
<td>3344</td>
<td>3346</td>
</tr>
<tr>
<td>20</td>
<td>6x6-W2.1xW2.1</td>
<td>3585</td>
<td>2757</td>
<td>4252</td>
<td>2738</td>
<td>2591</td>
<td>2481</td>
</tr>
<tr>
<td></td>
<td>6x6-W2.9xW2.9</td>
<td>3585</td>
<td>3767</td>
<td>4252</td>
<td>3340</td>
<td>3344</td>
<td>3346</td>
</tr>
<tr>
<td></td>
<td>4x4-W2.9xW2.9</td>
<td>3585</td>
<td>5539</td>
<td>4252</td>
<td>3340</td>
<td>3344</td>
<td>3346</td>
</tr>
<tr>
<td>18</td>
<td>6x6-W2.1xW2.1</td>
<td>4628</td>
<td>2757</td>
<td>4252</td>
<td>2738</td>
<td>2591</td>
<td>2481</td>
</tr>
<tr>
<td></td>
<td>6x6-W2.9xW2.9</td>
<td>4628</td>
<td>3767</td>
<td>4252</td>
<td>3340</td>
<td>3344</td>
<td>3346</td>
</tr>
<tr>
<td></td>
<td>4x4-W2.9xW2.9</td>
<td>4628</td>
<td>5539</td>
<td>4252</td>
<td>3340</td>
<td>3344</td>
<td>3346</td>
</tr>
</tbody>
</table>

60" (t=3.0")

<table>
<thead>
<tr>
<th>Slab Gage</th>
<th>WWR</th>
<th>WWR</th>
<th>(\phi_b M_y)</th>
<th>(\phi_w M_w)</th>
<th>(\phi_v V_n)</th>
<th>(\phi_v V_c)</th>
<th>(\phi_P_u) / Simple Span, lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>6x6-W2.1xW2.1</td>
<td>3546</td>
<td>3230</td>
<td>4734</td>
<td>3129</td>
<td>2967</td>
<td>2845</td>
</tr>
<tr>
<td></td>
<td>6x6-W2.9xW2.9</td>
<td>3546</td>
<td>4419</td>
<td>4734</td>
<td>4015</td>
<td>3993</td>
<td>3899</td>
</tr>
<tr>
<td></td>
<td>4x4-W2.9xW2.9</td>
<td>3546</td>
<td>6537</td>
<td>4734</td>
<td>4015</td>
<td>3993</td>
<td>3899</td>
</tr>
<tr>
<td>20</td>
<td>6x6-W2.1xW2.1</td>
<td>4223</td>
<td>3230</td>
<td>4930</td>
<td>3129</td>
<td>2967</td>
<td>2845</td>
</tr>
<tr>
<td></td>
<td>6x6-W2.9xW2.9</td>
<td>4223</td>
<td>4419</td>
<td>4930</td>
<td>4209</td>
<td>4060</td>
<td>3893</td>
</tr>
<tr>
<td></td>
<td>4x4-W2.9xW2.9</td>
<td>4223</td>
<td>6537</td>
<td>4930</td>
<td>4209</td>
<td>4060</td>
<td>3893</td>
</tr>
<tr>
<td>18</td>
<td>6x6-W2.1xW2.1</td>
<td>5461</td>
<td>3230</td>
<td>4930</td>
<td>3129</td>
<td>2967</td>
<td>2845</td>
</tr>
<tr>
<td></td>
<td>6x6-W2.9xW2.9</td>
<td>5461</td>
<td>4419</td>
<td>4930</td>
<td>4209</td>
<td>4060</td>
<td>3893</td>
</tr>
<tr>
<td></td>
<td>4x4-W2.9xW2.9</td>
<td>5461</td>
<td>6537</td>
<td>4930</td>
<td>4209</td>
<td>4060</td>
<td>3893</td>
</tr>
<tr>
<td>Slab Gage</td>
<td>WWR</td>
<td>(\phi_b M_y)</td>
<td>(\phi_w M_w)</td>
<td>(\phi_d V_d + \phi_c V_c)</td>
<td>(\phi P_u / \text{Simple Span, lbs})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>----------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>6x6-W2.1xW2.1</td>
<td>2911</td>
<td>2285</td>
<td>4369</td>
<td>2101</td>
<td>1966</td>
<td>1875</td>
</tr>
<tr>
<td></td>
<td>6x6-W2.9xW2.9</td>
<td>2911</td>
<td>3114</td>
<td>4369</td>
<td>2864</td>
<td>2679</td>
<td>2556</td>
</tr>
<tr>
<td></td>
<td>4x4-W2.9xW2.9</td>
<td>2911</td>
<td>4560</td>
<td>4369</td>
<td>3192</td>
<td>3201</td>
<td>3215</td>
</tr>
<tr>
<td>4.5" (t=2.5")</td>
<td>3511</td>
<td>2285</td>
<td>4715</td>
<td>2101</td>
<td>1966</td>
<td>1875</td>
<td>1938</td>
</tr>
<tr>
<td></td>
<td>6x6-W2.1xW2.1</td>
<td>3511</td>
<td>3114</td>
<td>4715</td>
<td>2864</td>
<td>2679</td>
<td>2556</td>
</tr>
<tr>
<td></td>
<td>6x6-W2.9xW2.9</td>
<td>3511</td>
<td>4560</td>
<td>4715</td>
<td>3463</td>
<td>3476</td>
<td>3494</td>
</tr>
<tr>
<td></td>
<td>4x4-W2.9xW2.9</td>
<td>3511</td>
<td>4560</td>
<td>4715</td>
<td>3466</td>
<td>2748</td>
<td>2176</td>
</tr>
<tr>
<td>20</td>
<td>4482</td>
<td>2285</td>
<td>5361</td>
<td>2101</td>
<td>1966</td>
<td>1875</td>
<td>1938</td>
</tr>
<tr>
<td></td>
<td>3114</td>
<td>5361</td>
<td>2864</td>
<td>2679</td>
<td>2556</td>
<td>2641</td>
<td>2166</td>
</tr>
<tr>
<td></td>
<td>5539</td>
<td>5361</td>
<td>3965</td>
<td>3923</td>
<td>3743</td>
<td>3868</td>
<td>3862</td>
</tr>
<tr>
<td>5.0" (t=3.0")</td>
<td>4140</td>
<td>2757</td>
<td>5116</td>
<td>2481</td>
<td>2327</td>
<td>2224</td>
<td>2165</td>
</tr>
<tr>
<td></td>
<td>3767</td>
<td>5116</td>
<td>3389</td>
<td>3179</td>
<td>3039</td>
<td>2958</td>
<td>2663</td>
</tr>
<tr>
<td></td>
<td>5539</td>
<td>5116</td>
<td>4055</td>
<td>4060</td>
<td>4072</td>
<td>4088</td>
<td>3507</td>
</tr>
<tr>
<td>22 gage</td>
<td>5294</td>
<td>2757</td>
<td>5764</td>
<td>2481</td>
<td>2327</td>
<td>2224</td>
<td>2165</td>
</tr>
<tr>
<td></td>
<td>3767</td>
<td>5764</td>
<td>3389</td>
<td>3179</td>
<td>3039</td>
<td>2958</td>
<td>2663</td>
</tr>
<tr>
<td></td>
<td>5539</td>
<td>5764</td>
<td>4602</td>
<td>4612</td>
<td>4617</td>
<td>4619</td>
<td>4617</td>
</tr>
<tr>
<td>18 gage</td>
<td>3966</td>
<td>3230</td>
<td>5190</td>
<td>2845</td>
<td>2675</td>
<td>2562</td>
<td>2482</td>
</tr>
<tr>
<td></td>
<td>4419</td>
<td>5190</td>
<td>3093</td>
<td>3093</td>
<td>3505</td>
<td>3395</td>
<td>3298</td>
</tr>
<tr>
<td></td>
<td>6517</td>
<td>5190</td>
<td>4399</td>
<td>4399</td>
<td>4399</td>
<td>4399</td>
<td>4399</td>
</tr>
<tr>
<td>5.5" (t=3.5")</td>
<td>4789</td>
<td>3230</td>
<td>5537</td>
<td>2845</td>
<td>2675</td>
<td>2562</td>
<td>2482</td>
</tr>
<tr>
<td></td>
<td>4419</td>
<td>5537</td>
<td>3893</td>
<td>3893</td>
<td>3893</td>
<td>3893</td>
<td>3893</td>
</tr>
<tr>
<td></td>
<td>6517</td>
<td>5537</td>
<td>4713</td>
<td>4713</td>
<td>4713</td>
<td>4713</td>
<td>4713</td>
</tr>
<tr>
<td>20</td>
<td>6133</td>
<td>3230</td>
<td>6185</td>
<td>2845</td>
<td>2675</td>
<td>2562</td>
<td>2482</td>
</tr>
<tr>
<td></td>
<td>4419</td>
<td>6185</td>
<td>3893</td>
<td>3893</td>
<td>3893</td>
<td>3893</td>
<td>3893</td>
</tr>
<tr>
<td></td>
<td>6517</td>
<td>6185</td>
<td>5297</td>
<td>5297</td>
<td>5297</td>
<td>5297</td>
<td>5297</td>
</tr>
</tbody>
</table>

Capacities above are Ultimate wheel loads. Apply appropriate load, impact or unbalanced factors as applicable.

WWR located at slab centerline \(d = t/2 \)

Positive Bending \(\phi_b M_y \), Weak Axis Bending \(\phi_w M_w \), Beam Shear \(\phi_d V_d + \phi_c V_c \), Punching Shear \(\phi V_p \) and \(L/360 \) Deflection \(\Delta \)
FDDM Scissor Lift Tables?

3.0 x 12 Composite + 25 psf construction load

<table>
<thead>
<tr>
<th>Slab</th>
<th>Gage</th>
<th>WWR</th>
<th>$\phi_b M_y$</th>
<th>$\phi_w M_w$</th>
<th>$\phi_d V_d + \phi_c V_c$</th>
<th>ϕP_d / Simple Span, lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5"</td>
<td>22</td>
<td>6x6-W2.9xW2.9</td>
<td>3679</td>
<td>3114</td>
<td>5006</td>
<td>2903 2903 2570 2025 1552 1153 812</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4x4-W2.9xW2.9</td>
<td>3679</td>
<td>4560</td>
<td>5006</td>
<td>3702 3243 2570 2025 1552 1153 812</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4x4-W4.0xW4.0</td>
<td>3679</td>
<td>6115</td>
<td>5006</td>
<td>1492 3114 5006 2903 2903 2570 2025 1552 1153 812</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>6x6-W2.9xW2.9</td>
<td>4390</td>
<td>3114</td>
<td>6206</td>
<td>2903 2903 2903 2691 2137 1676 1286</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4x4-W2.9xW2.9</td>
<td>4390</td>
<td>4560</td>
<td>6206</td>
<td>4251 4108 3320 2691 2137 1676 1286</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4x4-W4.0xW4.0</td>
<td>4390</td>
<td>6115</td>
<td>6206</td>
<td>4667 4108 3320 2691 2137 1676 1286</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>6x6-W2.9xW2.9</td>
<td>5649</td>
<td>3114</td>
<td>6364</td>
<td>2903 2903 2903 2903 2570 2108 2108</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4x4-W2.9xW2.5</td>
<td>5649</td>
<td>4560</td>
<td>6364</td>
<td>4251 4251 4251 3855 3158 2570 2108 2108</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4x4-W4.0xW4.0</td>
<td>5649</td>
<td>6115</td>
<td>6364</td>
<td>4791 4830 4636 3855 3158 2570 2108 2108</td>
</tr>
<tr>
<td>6.0"</td>
<td>22</td>
<td>6x6-W2.9xW2.5</td>
<td>4239</td>
<td>3767</td>
<td>5398</td>
<td>3229 3361 3221 2570 2026 1545 1136</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4x4-W2.9xW2.5</td>
<td>4239</td>
<td>5398</td>
<td>5398</td>
<td>4291 4052 3221 2570 2026 1545 1136</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4x4-W4.0xW4.0</td>
<td>4239</td>
<td>7464</td>
<td>5398</td>
<td>4921 4052 3221 2570 2026 1545 1136</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>6x6-W2.9xW2.5</td>
<td>5054</td>
<td>3767</td>
<td>6598</td>
<td>3329 3361 3361 3361 3361 2737 2182 1713</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4x4-W2.9xW2.5</td>
<td>5054</td>
<td>5398</td>
<td>6598</td>
<td>4895 4943 4125 3370 2737 2182 1713</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4x4-W4.0xW4.0</td>
<td>5054</td>
<td>7465</td>
<td>6598</td>
<td>5329 5098 4125 3370 2737 2182 1713</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>6x6-W2.9xW2.5</td>
<td>6511</td>
<td>3767</td>
<td>7148</td>
<td>3329 3361 3361 3361 3361 2737 2182 1713</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4x4-W2.9xW2.5</td>
<td>6511</td>
<td>5398</td>
<td>7148</td>
<td>4895 4943 4125 3370 2737 2182 1713</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4x4-W4.0xW4.0</td>
<td>6511</td>
<td>7465</td>
<td>7148</td>
<td>5800 5838 5724 4748 3990 3300 2722</td>
</tr>
<tr>
<td>6.5"</td>
<td>22</td>
<td>6x6-W2.9xW2.5</td>
<td>4819</td>
<td>4419</td>
<td>5807</td>
<td>3627 3827 3827 3155 2535 1974 1495</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4x4-W2.9xW2.5</td>
<td>4819</td>
<td>5807</td>
<td>5807</td>
<td>4937 4918 3919 3155 2535 1974 1495</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4x4-W4.0xW4.0</td>
<td>4819</td>
<td>6115</td>
<td>5807</td>
<td>4937 4918 3919 3155 2535 1974 1495</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>6x6-W2.9xW2.9</td>
<td>5745</td>
<td>4419</td>
<td>7007</td>
<td>3627 3827 3827 3827 3827 3386 2732 2180</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4x4-W2.9xW2.9</td>
<td>5745</td>
<td>6517</td>
<td>7007</td>
<td>5349 5643 4985 4098 3386 2732 2180</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4x4-W4.0xW4.0</td>
<td>5745</td>
<td>8115</td>
<td>7007</td>
<td>6045 6070 4985 4098 3386 2732 2180</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>6x6-W2.9xW2.9</td>
<td>7409</td>
<td>4419</td>
<td>7966</td>
<td>3627 3827 3827 3827 3827 3386 2732 2180</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4x4-W2.9xW2.9</td>
<td>7409</td>
<td>5349</td>
<td>7966</td>
<td>5349 5643 5643 5643 4889 4073 3391</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4x4-W4.0xW4.0</td>
<td>7409</td>
<td>7966</td>
<td>7966</td>
<td>6926 6962 6889 5780 4889 4073 3391</td>
</tr>
</tbody>
</table>

Capacities above are **Ultimate** wheel loads. Apply appropriate load, impact or unbalanced factors as applicable.

WWR located at slab centerline ($d = t/2$)

Positive Bending ($\phi_b M_y$), Weak Axis Bending ($\phi_w M_w$), Beam Shear ($\phi_d V_d + \phi_c V_c$), Punching Shear (ϕ_{V_p}), and L/360 Deflection (Δ)
Data Rack

Slab
- 1.5 x 6 x 18 ga composite deck
- 5.0” Total Depth
- 3 ksi NW Concrete
- 7-0 Clear Span
- 40 psf Concurrent LL
- 6x6 – W2.9xW2.9 WWR
- d = 1.0”

Data Rack
- 42” deep
- 28” overall width
- 21” caster spacing
- 3” casters
- 3000# static capacity
Data Rack
Line load analysis with b_e at L/4

Use b'_e for overlap of adjacent loads and calculation of V_n, M_y, Δ

M_w is a bit more complicated.
Data Rack

26” 14” 21” 14” 26”

14” 12” 14” 12”

$2364 \text{ in} - \text{ lbs} / \text{ ft}$

$290 \text{ in} - \text{ lbs} / \text{ ft}$

$20 \text{ in} - \text{ lbs} / \text{ ft}$

$2674 \text{ in} - \text{ lbs} / \text{ ft}$

$b_e = 4.33’$
Form Deck

+V₁, FP₁/₁₇₁, +V₂, FP₂/₂₇₂, +V₃, -V₂, -V₃, -V₄, +M₁₂, +M₂₃, +M₃₄, -M₂, -M₃
Steel Fibers

In theory, fibers are not a replacement for WWR as a tensile component, so \(A_s = 0 \).

If so, \(M_w = 0 \), which suggests \(P = 0 \).

This simply cannot be true.
Steel Fibers, Draft Proposals

Performance-Based Requirements for Fiber Dosage for Concentrated Loads on Composite Steel Deck Floor-Slabs

Section 2.4.B.11, Concentrated Loads, of the ANSI/SDI C-2017 Standard for Composite Steel Deck Floor-Slab permits a concentrated load to be laterally distributed perpendicular to the deck ribs (see Fig. 1). Accordingly, the concrete above the top of a steel deck is required to be designed as a one-way concrete slab, transverse to the deck ribs, in accordance with Chapter 7 of ACI 318 to resist the weak axis moment, \(M_{wa} \), due to the concentrated load.

A procedure for calculating \(M_{wa} \) is provided in Section 2.4.B.11.b of the standard using the following equations (Eq. 2.4.15a and Eq. 2.4.15b in ANSI/SDI C-2017):

\[
M_{wa} = 12P \cdot b_e / (15W) \quad \text{in.-lb/ft} \\
= P \cdot b_e / (15W) \quad \text{N-mm/mm}
\]

Single load analysis. Use new for cluster loads.

where,
- \(P \) = magnitude of concentrated load; lb (N)
- \(b_e \) = effective width of concentrated load, perpendicular to the deck ribs; in. (mm)
- \(W \) = effective length of concentrated load, parallel to the deck ribs; in. (mm)

This technical bulletin provides a methodology to calculate the required fiber dosage for a given application to permit the use of fibers in lieu of welded-wire reinforcement (WWR).
• Use P/b_e and simple beam mechanics
• M_w often limits capacity; increase d or A_s
• Cluster Loads – for $M_y V_n \Delta$, use b_e'
• Grouping loads is overly conservative
• Replace SDI M_w equation with new
• Check with supplier for $M_n < M_y$
Polling Question #2

What loads are included in Transverse (weak axis) bending analysis?

a) Dead + Concentrated

b) Live + Concentrated

c) Concentrated only

d) Dead + Live + Concentrated
Polling Question Answers

Which Limit State is NOT Applicable for Designing Concentrated Loads on Concrete Slabs on FLOOR Deck?

B) Web Crippling

What loads are included in Transverse (weak axis) bending analysis?

C) Concentrated only
Questions?

Copyright © 2018 Steel Joist Institute. All Rights Reserved.

Presented by:
Cody Trueblood, New Millennium
Mike Antici, NUCOR