

Part 1: Evaluation and Modification of Open Web Steel Joists and Joist Girders OCTOBER 17, 2018

Copyright © 2017 Steel Joist Institute. All Rights Reserved.

Presented by: Bruce Brothersen, P.E., Engineering Manager, Vulcraft Walter Worthley, P.E., Chief Engineer, Valley Joist

Polling Questions

- New requirement to earn PDH credits
- Two questions will be asked during the duration of today's presentation
- The question will appear within the polling section of your GoToWebinar Control Panel to respond

Disclaimer

The information presented herein is designed to be used by licensed professional engineers and architects who are competent to make a professional assessment of its accuracy, suitability and applicability. The information presented herein has been developed by the Steel Joist Institute and is produced in accordance with recognized engineering principles. The SJI and its committees have made a concerted effort to present accurate, reliable, and useful information on the design of steel joists and Joist Girders. The presentation of the material contained herein is not intended as a representation or warranty on the part of the Steel Joist Institute. Any person making use of this information does so at one's own risk and assumes all liability arising from such use.

Learning Objectives

- Identify the key characteristics of in place joists.
- Teach you how to determine who the original manufacturer was and whether they can provide any additional documentation.
- Show you how to verify the original design loads and evaluate the joist for the new loads.
- As part of the evaluation, procedures will be discussed to identify the joist components and connections that are inadequate.

- Commercial manufacturing of open web steel joists began in 1923
- The Steel Joist Institute was formed in 1928
 - Open Web Steel Joist use has continued to grow
 - There are millions of Open Web Steel Joists in service

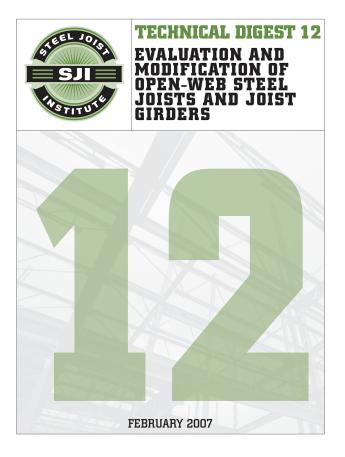
Introduction (cont'd)

Evaluation and Modification of joists are required for many reasons:

- Building renovations
- Addition of roof top units
- Conveyor loads
- Field deviations Dimensional changes
- Other changes not contemplated in the original design
- Damage to the joists

New Resource Available

SJI Technical Digest No. 12 Evaluation and Modification of Open-Web Steel Joists and Joist Girders


- Present procedures
- Suggest details for modification or strengthening

SJI Technical Digest No. 12

Evaluation and Modification of Open-Web Steel Joists and Joist Girders Price: \$30

Order from: www.steeljoist.org

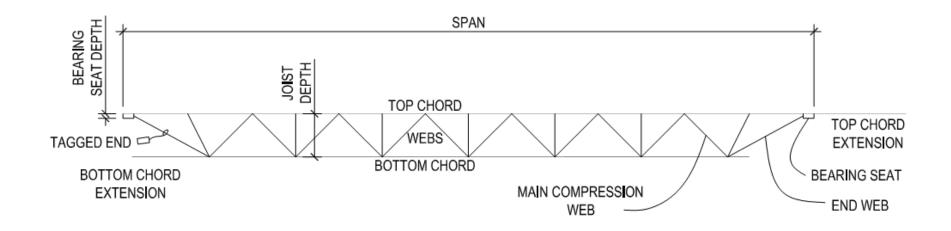
SJI Technical Digest No. 12

Background	
Glossary	
Chapter 1	Evaluations of Existing Joist Strength
Chapter 2	Methods of Supporting Additional Load
Chapter 3	Design Approaches For Strengthening Joists
Chapter 4	Design Approaches For Modifying Joists -
	Shortening And Lengthening
Chapter 5	Other Considerations
Chapter 6	Summary
References	
Appendix A	Joist Investigation Form
Appendix B	Common Properties of Equal Leg Angles With
	Leg Sizes 2 In. or Less

Glossary of Terms

- Allowable Strength Design (ASD)
- Allowable Strength
- Available Strength
- Bearing
- Bridging
- Buckling
- Buckling Strength
- Camber
- Chords
- Cold-Formed Steel Structural Member
- Composite Section

- Connection
- Deck
- Design Load
- Design Strength
- End Diagonal or Web
- End Welds
- Existing Member
- Filler
- Joint
- Joist
- Joist Girder


SJI SJI

Glossary of Terms

- Load
- LRFD (Load and Resistance Factor Design)
- Material
- Nominal Strength
- Preload Force
- Reinforcing Member
- Required Strength
- Resistance Factor, Φ
- Safety Factor, Ω
- Slenderness Ratio
- Span

- Specified Minimum Yield
- Stress
- Specifying Professional
- Splice
- Stability
- Standard Specifications
- Structural Analysis
- Tagged End
- Webs
- Yield Point
- Yield Strength
- Yield Stress

Glossary of Terms

STEEL JOINS

Evaluation of Existing Joist

Find construction documents

Contract drawings and/or joist erection plan Onsite Investigation

Joist tag Contact Joist Manufacturer

See if calculations are available. In most cases the manufacturer will have a minimal cost to locate, copy and send information on old projects.

Determine the specification in which the existing joist were designed.

2015 SJI Catalog

K-Series Standard Specifications

- K-Series Load Tables
- KCS Joists

LH- and DLH-Series Standard Specifications

 LH- and DLH-Series Load Tables

Joist Girders Standard Specifications

• Joist Girder Weight Tables

Order from: www.steeljoist.org

Evaluation of Existing Joist

Find construction documents No Contract drawings and/or joist erection plan Onsite Investigation No Joist tag - then document joist in question

Complete the Joist Investigation Form

Contact SJI for assistance

Chapter 1

Evaluation of Existing Joist Strength

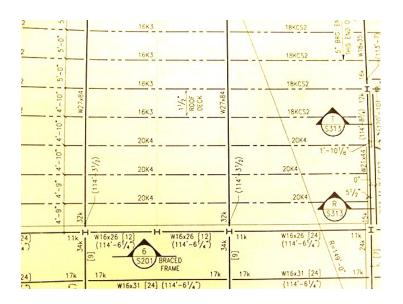
Determine Capacity of Existing Joist System

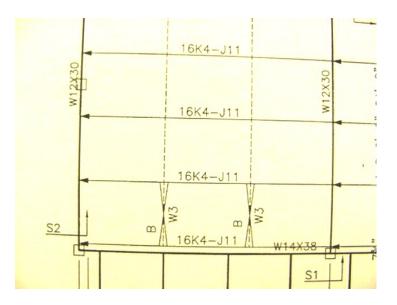
- As-built design of joists
- Existing joists possibly over specified
- Building usage may have changed
- Have joists been damaged

As – Built Design of Joists

How to determine

- Original contract structural documents
- Final joist erection drawings
- Year job was constructed
- Joist manufacturers identification tag
- Field investigation and measurements


Joist Drawings


Structural Drawing

- Designation
- Joist Spacing

Erection Drawing

- Designation
- Joist Spacing
- Mark Number

STEEL POIST

Joist Identification Tag

Joist tag information

- Joist manufacturer's name
- Joist manufacturer's job number
- Erection mark number, e.g. J1 or T3

Joist Investigation Form

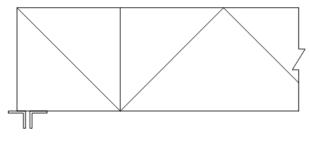
Steel Joist Institute Assistance

- Fill out the form online
- Download from SJI website
 www.steeljoist.org
- Return to SJI office or manufacturer for assistance
- Appendix A of TD 12

SJI SJI	STEEL	JOIST I	NSTITU	TE		
eeljoist.org						
	Please com		ving form and x it to 843-407	email it to <u>sji@s</u> '-4044.	steeljoist	lorg
Date:			_			
Name:						
Company:						
Phone:			_Fax:		Cell:	
Email:						
Project D						
Jobsite Lo	cation City/Sta	te:				
Project Na	ime:					
Why are you requesting this information? Select all that apply.						
Evaluat	ion	□ Field or ere	ection problem	□ Inspection 1	🗆 Legal i:	ssue
New co	nstruction	Rehabilitat	ion or reuse	Seismic retrofit		
Structur	al problem	□ Other, des	cribe			
Supplementary Information What year was the building constructed or approximate age of the structure?						
Who was	the joist manuf	acturer?				
Is there a tag on the joist?		□ No □ Yes	s, provide tag info	ormation		
What type	of trusses are	the joists?	□ Warren	□ Modified Wa	rren 🗆	Pratt
			Other, dese	cribe or sketch		
What are t	What are the joists used for?			ng 🗆 Floor	loading	

234 W. Cheves Street • Florence, SC 29501 • T (843) 407-4091 • F (843) 407-4044

Field Investigation


Helpful and Required Information

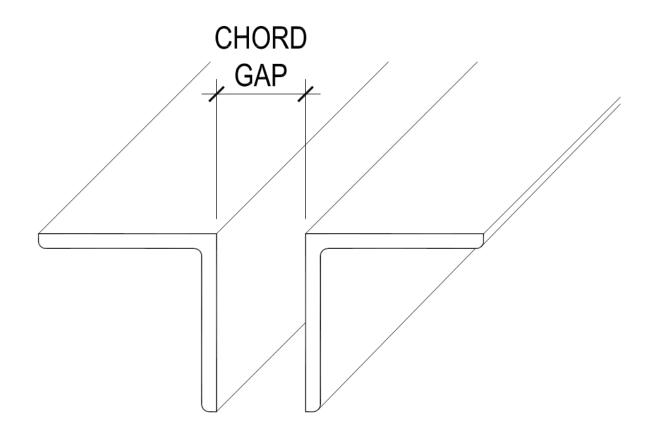
- Loading on the joists
- Information from the joist tags
- Joist configuration
- Joist span
- Joist spacing
- Joist depth or height
- Bearing condition
 - Underslung or Bottom Bearing

Bearing Condition

STEEL JOIN

Field Investigation

Type of Web Members


- Rod webs
- Crimped Angle webs
- Angles welded to the outside of chords
- Cold-formed sections

Also Take Note of

- End Diagonal type
- Eccentricities
- Weld Sizes and lengths, welded connections are designed for the design requirements not the overall strength of the member
- Panel Point spacing

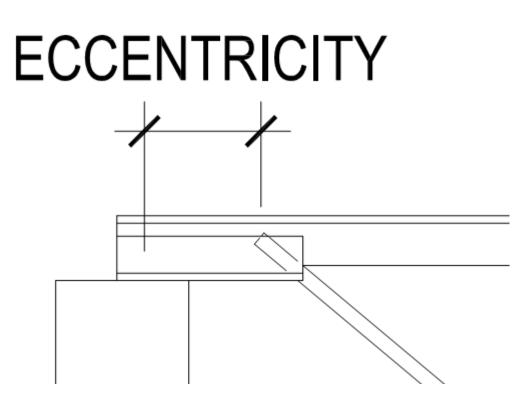
Type of Chord Members

Type of Web Members

Rod webs

Type of Web Members

Crimped Angle webs



Type of Web Members

Angles welded to the outside of chords

TEEL JO

Weld Location

STEEL TOTO

Welded Connections

Weld Sizes and Lengths are designed for the original design requirement, not the overall strength of the member.

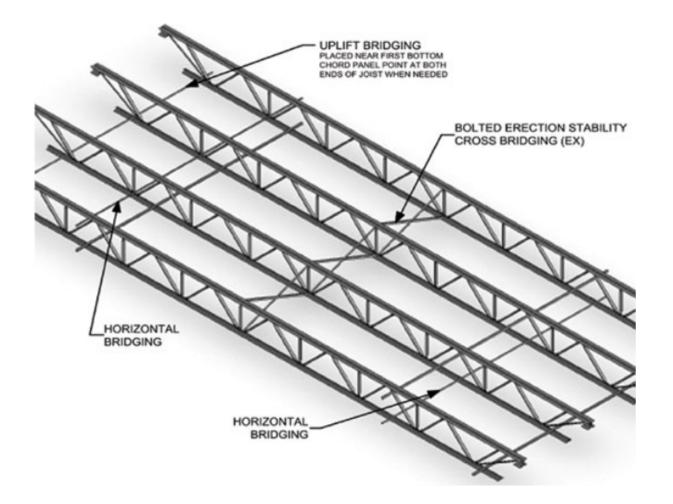
Comparison of SJI Specification Types

Rod Web	Double Web Members			
	Crimped Web			
<u>Shortspans</u>	<u>Longspans</u>	<u>Joist Girders</u>		
K-Series	LH-Series	G-Series		
KCS-Series	DLH-Series	BG-Series		
		VG-Series		

Field Investigation

Type of Chord Members

- Double Angles
 - Separation distance
 - Fillers or ties
- Cold-formed sections
- Rods
- Splices


Field Investigation

Other Items to Note

- Type of Bridging and Locations
- Quality of bridging connections
- Anchorage of bridging
- Interferences
 - Coupon samples to determine yield strength
- Condition of joists and existing deck

SJI SJI

Types of Bridging

85 Year Steel Joist Manual

- Specifications from 1928 to 2002
- Load Tables from 1928 to 2002

85 Year Steel Joist Manual Introduction

INVESTIGATION OF STEEL JOISTS IN EXISTING BUILDINGS

I. General

First and foremost, the investigating engineer, in performing his tasks, should continually be aware of one principal consideration: the determinations he makes affect the safety of the human beings who occupy the buildings he is investigating.

Secondly, the task of investigating steel joists in existing buildings is difficult, at best. Personal time, effort, and patience are all required to conduct a proper study.

Thirdly, the investigating engineer should scrupulously observe the following rules:

- 1) Make as few assumptions as possible.
- Verify by actual observation and physical measurements all data whenever possible.
- 3) Consciously look for *unusual and/or dangerous job site conditions* not specified, shown, or recorded in any documentation.
- 4) Double check all data.

Joist Chord Damage During Handling

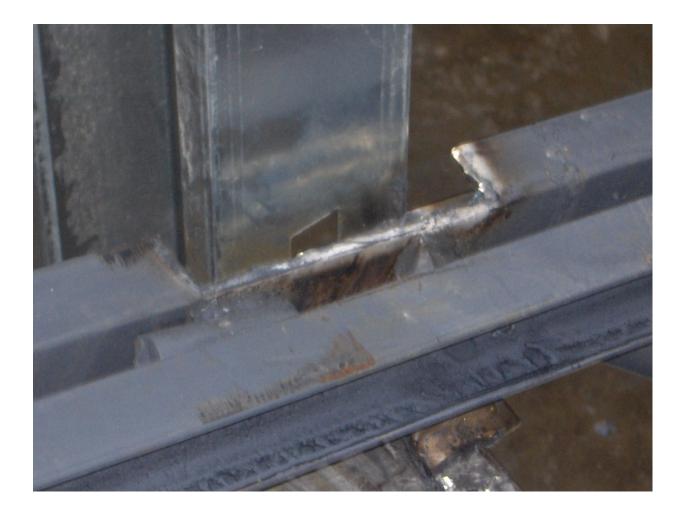
Joist BC Damage During Handling

Joist TC Damage During Construction

Joist End Web Damage During Construction

40

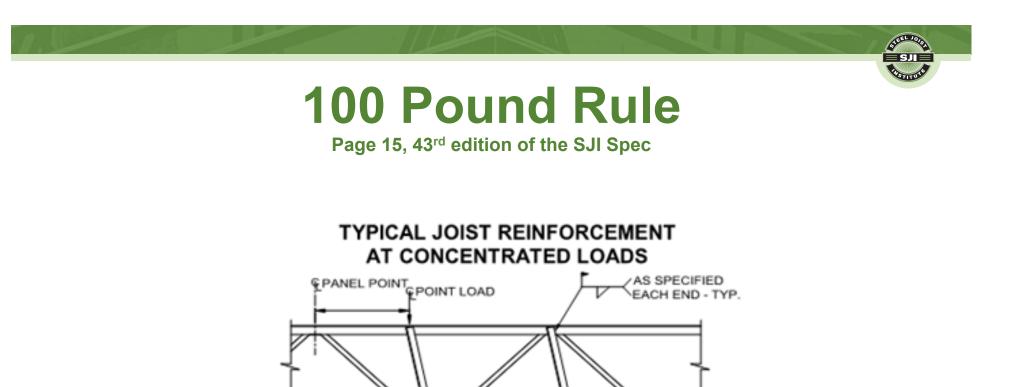
Joist End Web Damage During Construction



Joist BC Damage During Construction

Joist TC Damaged During Construction

Incorrect Installation or Usage

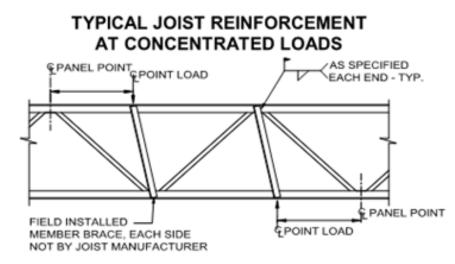

OSHA Federal Regulation 29 CFR 1926.757 (a)(7)

No modification that affects the strength of a steel joist or steel joist girder shall be made without the approval of the project structural engineer of record.

Methods to Reduce the Need for Minor Repairs

- 100 pound rule
- Add Loads
- Bend Loads
- KCS joists

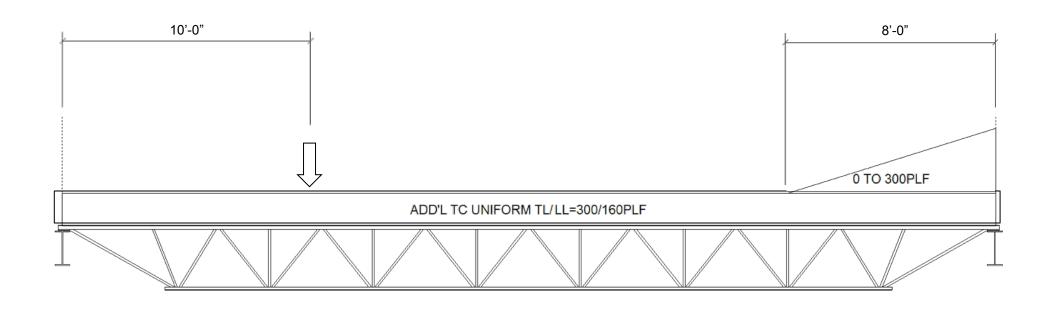
For nominal concentrated loads between panel points, which have been accounted for in the specified uniform design loads, a "strut" to transfer the load to a panel point on the opposite chord shall not be required, provided the sum of the concentrated loads within a chord panel does not exceed 100 pounds and the attachments are concentric to the chord.


FIELD INSTALLED -

MEMBER BRACE, EACH SIDE NOT BY JOIST MANUFACTURER PANEL POINT

& POINT LOAD

Page 15, 43rd edition of the SJI Spec

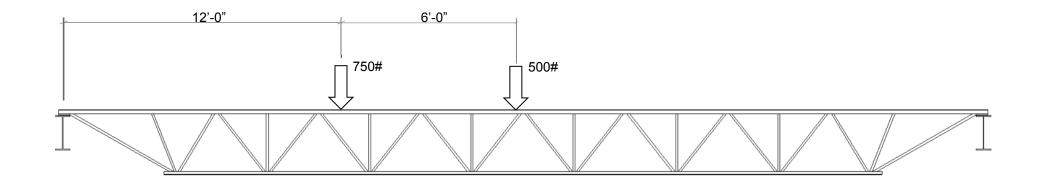


Although standard K-Series, including KCS-Series, and standard LH-Series joists are designed specifically to support uniformly distributed loads applied to the top chord, research conducted by the Steel Joist Institute, using second-order inelastic analysis, has demonstrated that the localized accumulation of uniform design loads of up to 100 pounds within any top or bottom chord panel has a negligible effect on the overall performance of the joist, provided that the load is applied to both chord angles in a manner which does not induce torsion on the chords.

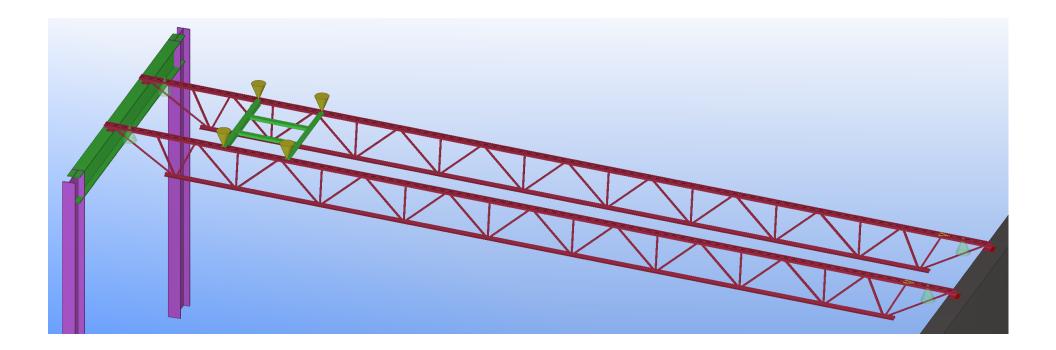
Concentrated loads in excess of 100 pounds or which do not meet the criteria outlined above, must be applied at joist panel points, or field strut members must be utilized as shown in the detail above.

STEELJOIS

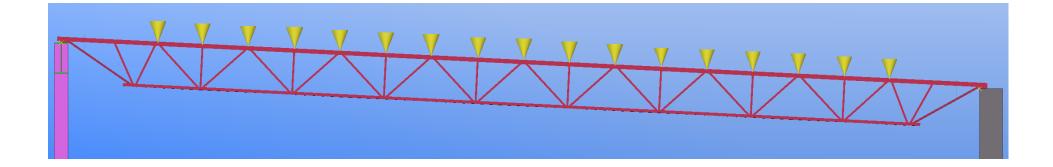
Load Diagram



STEEL JOIN

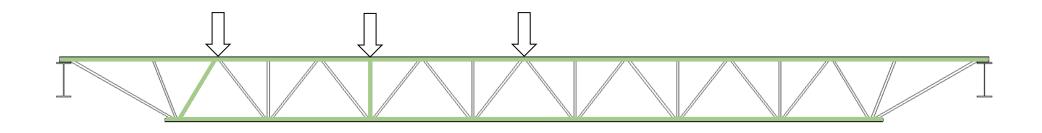

STEEL JOIS = ILS =

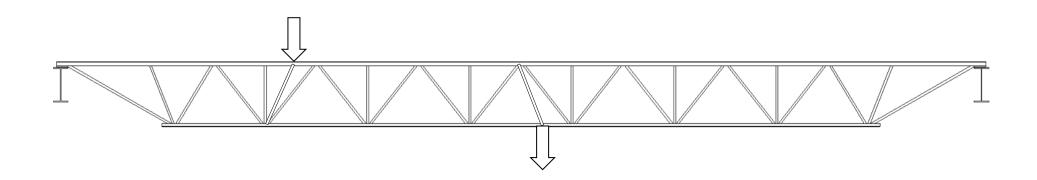
Concentrated Loads



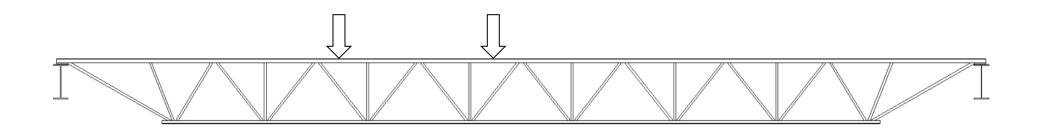
HVAC Frame

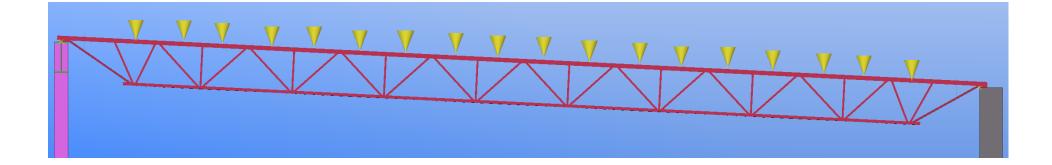
LEEL JO




STEEL JOINT

Worst Case Condition

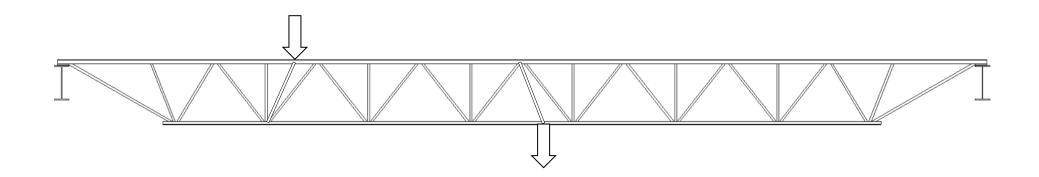



STEEL JOIST

STEEL JOINT

Bend Load

STEEL JOIN


Bend Load

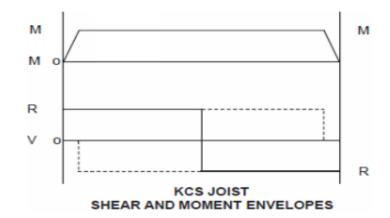
STEEL JOR

Additional Webs are Not Needed with a Bend Load

Specifying the Loads Page 182, 43rd edition of the SJI Spec

Option 3: For additional point loads with exact locations <u>not</u> known along the joist or for incidental loads, any one, or both, of the following can be specified on the structural plan in addition to option 1 or 2 above:

- a) "Design for a (__) lb. concentrated load located at any <u>one</u> panel point along the joist". This is referred to as an "Add-Load".
- b) "Design for additional bending stresses resulting from a (__) lb. concentrated load located at any location along (___) chord". This is referred to as a "Bend-Check" and can be specified on top chord, bottom chord, or both top and bottom chords. This can be used when the concentrated load is already accounted for in the joist designation, uniform load, or specified Add-Load yet this specified amount of load shall be permitted to also be located at any location between panel points. The additional bending stresses as a result of this load are then designed for. A Bend-Check load shall not exceed (Add-Load + 400 lbs.) A Bend-Check load can be specified by itself without an Add-Load.
- c) Both (a) and (b) above can be specified with equal concentrated loads for each; or simply denote "Design joist for a (__) lb. concentrated load at any location along the (___) chord."


KCS Joists

KCS- Series joist advantages:

- Provides a versatile K-Series Joist that can be easily specified to support uniform and nonuniform loads plus concentrated loads applied at panel points.
- Eliminate many repetitive load diagrams required on contract documents and allow some flexibility of load locations.

KCS-Series joist chords are designed for a flat positive moment envelope. The moment capacity is constant at all interior panels.

All webs are designed for a vertical shear equal to the specified shear capacity and interior webs will be designed for 100% stress reversal.

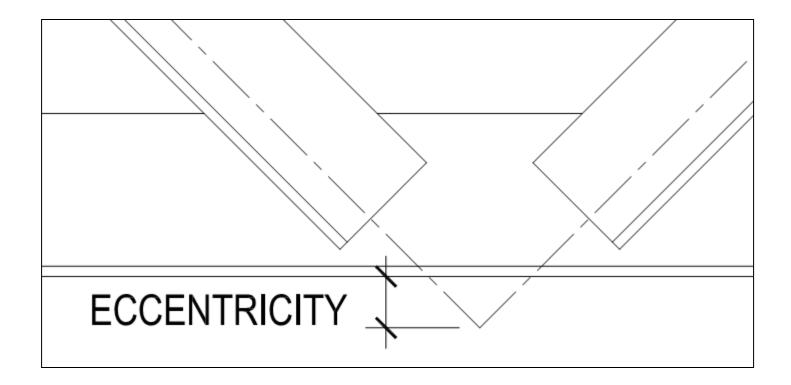
Both LRFD and ASD **KCS**-Series joist load tables list the shear and moment capacity of each joist. The selection of a **KCS**-Series Joist requires the specifying professional to calculate the maximum moment and shear imposed and select the appropriate **KCS**-Series Joist.

SJE SJE

Analysis Considerations

To Analyze Joist Capacity

- Pinned connections are assumed for web members
- Specifications for K-Series joists in the 2015 spec has changed.
 - Prior to 2015 bending in K-series from uniformly applied loads was neglected provided the top chord panel spacing did not exceed 24 inches.
 - In 2015 the bending from uniformly applied loads are considered, regardless of the panel spacing.
 - However the K factor in the slenderness ratio is 0.75 in 2015 and 1.0 prior.
- Consequently a decision needs to made regarding which spec is to be used for the evaluation of joists.



Analysis Considerations (con't)

To Analyze Joist Capacity

- A first-order analysis is used
- The SJI permits eccentricities to be neglected when
 - For K-Series, the "3/4 Rule" is followed Spec 4.5 (c)
 - For all other joist series, when the eccentricity "... does not exceed the distance between the centroid and back of the chord"

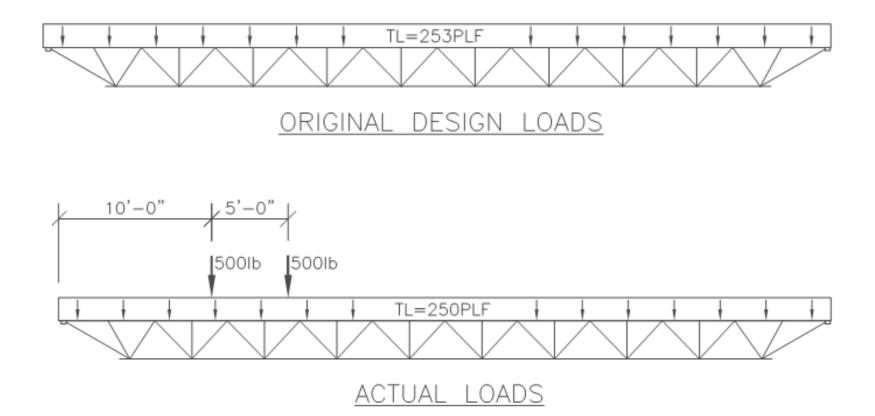
Web Eccentricity

EEL JO

Polling Question

What information is available on the joist tag?

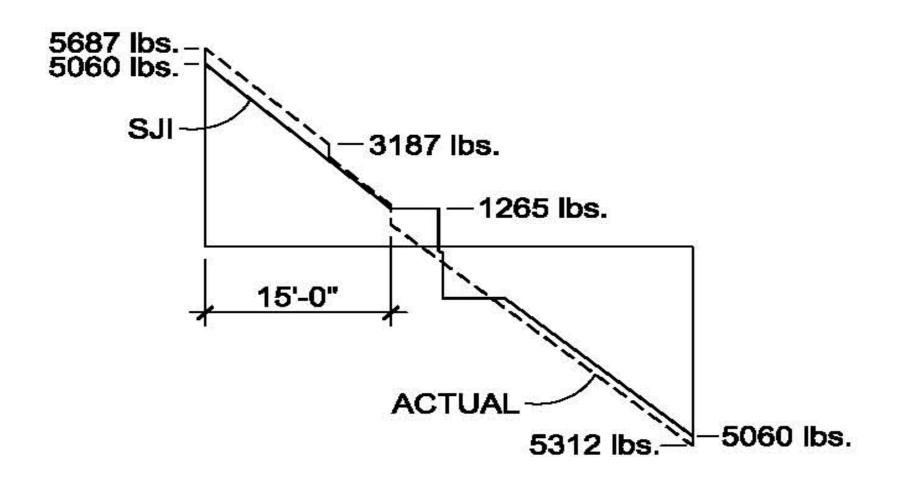
- a) Manufacturers Name
- **b) Project Number**
- c) Mark Number
- d) All of the above


Example 1.1 Determine if a Joist Requires Reinforcement

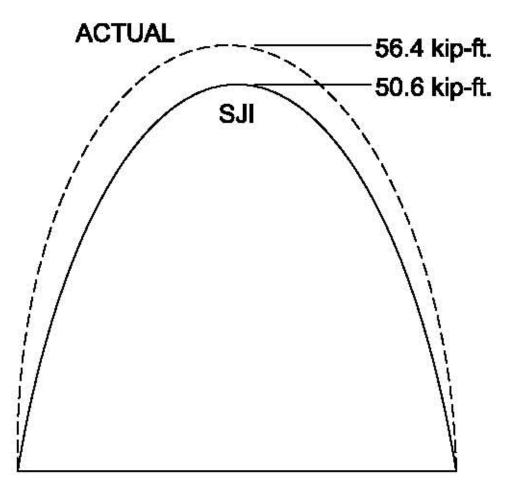
Scenario- K- series joist pre 2015 spec.

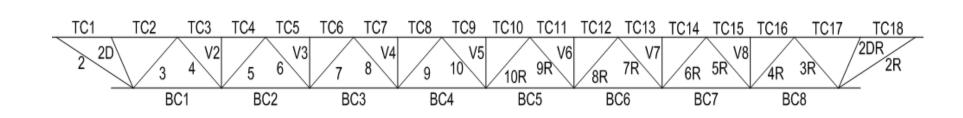
- A roof top unit is to be added to two 24K7 joists spanning 40 feet
- Unit adds two, 500 lb. point loads to each joist
 - Located 10 ft. and 15 ft. from one end
- It has been determined that the uniform load on the joist is 250 PLF

Determine if the joist must be reinforced


Load Diagram

66


STEEL JOIG


TEEL JO

STEEL JOIS = SJI =

Joist Diagram

STEEL JOIG

Existing Top Chord Review

Forces are compression

TC are continuous and segments 7 thru 12 have a larger axial force than the maximum in a 24K7.

TC Segment	24K7	Revised Loading
Number	Axial Design Force	Required Axial Force
1	9937	11319
2	9477	10861
3	16924	19704
4	16924	19704
5	22207	25863
6	22207	25863
7	25374	29194
8	25374	29194
9	26429	29548
10	26429	29548
10	25374	27841
12	25374	27841
13		
	22207	24038
14	22207	24038
15	16924	18132
16	16924	18132
17	9477	10075
18	9937	10532

Existing Bottom Chord Review

Forces are tension.

BC are continuous and segments 3 thru 6 have a larger axial force than the maximum in a 24K7.

BC Segment	24K7	Revised Loading
Number	Design Axial Force	Required Axial Force
1	13525	15606
2	19834	23322
3	24054	27948
4	26165	29600
5	26165	28955
6	24054	26202
7	19834	21352
8	13525	14426

Existing Web Review

- All the webs have higher axial forces.
- Note the minimum shear used to determine the web axial force = 25% of the end reaction.
- Actual vs. Required weld lengths need to be checked.
- Design software can change the values.

Web	24K7	Revised Loading
Number	Axial Force	Axial Force
2	+ 11021	+ 12539
2D	- 1128	- 1133
3	- 5608	- 6555
4	+ 4709	+ 5662
V2	- 600	- 606
5	- 4033	- 4998
6	+ 3287	+ 3510
V3	- 635	- 581
7	- 2560	- 2882
8	+ 1828	+ 2061
V4	- 638	- 948
9	-1828	-2061
10	+ 1828	-2061
V5	- 635	- 665
10R	+ 1828	+ 2061
9R	-1828	-2061
V6	- 638	- 649
8R	+ 1828	+ 2265
7R	- 2560	- 2990
V7	- 635	- 645
6R	+ 3287	+ 3711
5R	- 4033	- 4450
V8	- 600	- 610
4R	+ 4709	+ 5120
3R	- 5608	- 6011
2DR	- 1128	- 1135
2R	+ 11021	+ 11668

SJI SJI

Field Repairs

Field workmanship can weaken the joist

Field Repairs

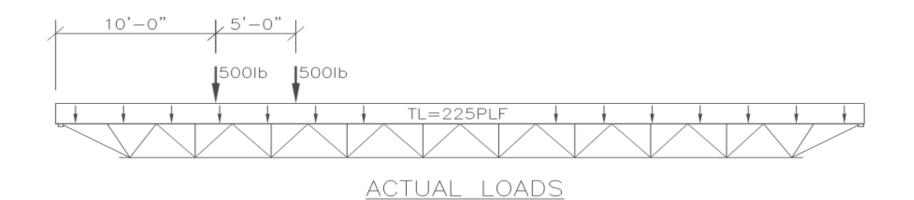
Poor field workmanship can cause concern.

Actual Member Load Carrying Capacity

- Evaluate the actual member to see what the actual member capacity might be.
- Evaluate any conservative design assumptions to see if a more accurate condition occurs.
- Evaluate the length and placement of weld.
- Determine the risk of repair verses the in place capacity.
- Use Engineering Judgment.

Original Loads

Revised Loads


- Assume 20 psf DL
- Assume 30 psf LL
- Assume 5' joist spacing
- Total uniform load
 250 plf

- Assume 15 psf DL
- Assume 30 psf LL
- Assume 5' joist spacing
- Total uniform load
 225 plf

Load Diagram

ORIGINAL DESIGN LOADS

STEEL JOIS

- **Top Chord Review**
- Forces are compression.
- Fewer segments have interaction ratios over 1.0

24K7	Revised Loading
Design Axial Force	Required Axial Force
9937	10327
9477	9916
16924	18015
16924	18015
22207	23646
22207	23646
25374	26661
25374	26661
26429	26911
26429	26911
25374	25309
25374	25309
22207	21822
22207	21822
16924	16443
16924	16443
9477	9129
9937	9541
	Design Axial Force 9937 9477 16924 16924 22207 22207 25374 26429 26429 25374 25374 26429 25374 16924 16924 25374 26429 26429 26429 16924 16924 16924 16924 9477

Bottom Chord Review

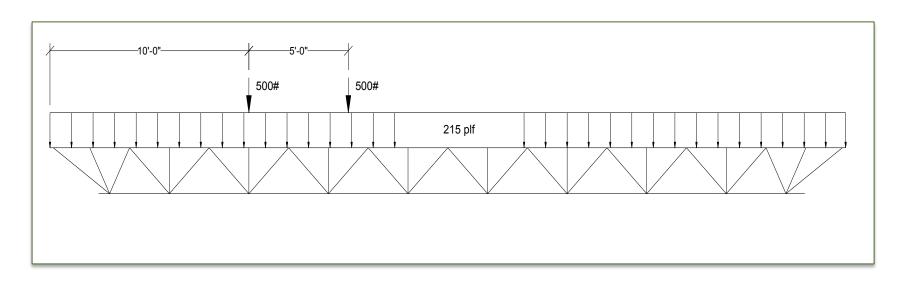
- Forces are tension
- Segments 4 thru 5 have a larger axial force than the maximum in a 24K7
- About a 3% greater force

BC Segment	24K7	Revised Loading
		5
Number	Design Axial Force	Required Axial Force
1	13525	14256
2	19834	21342
3	24054	25547
4	26165	26989
5	26165	26344
6	24054	23802
7	19834	19373
8	13525	13076

Web Review

- Many webs still have higher axial forces.
- The minimum web shear to calculate the web force = 25% of the end reaction.
- Actual capacities need to be reviewed verses required forces.
- Actual vs. Required weld length need to be verified.
- + tension
- compression

Web	24K7	Revised Loading
Number	Design Axial Force	Required Axial Force
2	+ 11021	+ 11441
2D	- 1128	-1021
3	- 5608	-5998
4	+ 4709	+ 5194
V2	- 600	-546
5	- 4033	-4598
6	+ 3287	+ 3184
V3	- 635	-518
7	- 2560	-2627
8	+ 1828	+1879
V4	- 638	-885
9	-1828	-1879
10	+ 1828	-1879
V5	- 635	-602
10R	+ 1828	+ 1879
9R	-1828	-1879
V6	- 638	-586
8R	+ 1828	+ 2083
7R	- 2560	-2736
V7	- 635	-582
6R	+ 3287	+ 3384
5R	- 4033	-4049
V8	- 600	-551
4R	+ 4709	+ 4652
3R	- 5608	-5454
2DR	- 1128	-1021
2R	+ 11021	+ 10570


- An alternate approach would be to check the manufactured joist using the actual design dead and live loads in place of the load capacity from the SJI tables.
- From a review of the structural drawings the joist spacing is found to be 6 feet o.c. and the roof slope is ¹/₂:12.
- A check of the roof materials found that the actual roof dead load, including an allowance for the joist weight, is 15 psf.

The roof live load can then be calculated based on IBC Equation 16-26

Lr = LoR1R2 where: Lo = 20 psf R1 = 1.2 - 0.001At and At = 6 x 40 = 240 sq. ft. = 1.2 - 0.001(240) = 0.96 R2 = 1 (for roof slope < 1:12) then: Lo = 20(0.96)(1) = 19.2 psf and the joist LL = 19.2(6) = 115.2 plf DL = 15(6) = 90 plf

The manufactured joist can now be checked using the actual design loads DL = 90 plf & LL = 115 plf along with the two additional 500# loads.

Top Chord Review

- Forces are in Compression.
- Comparison of Top Chord axial forces for 24K7 joist and for same joist with revised loads.
- The top chord panels are acceptable.

TC Segment	24K7	Revised Load
Number	Design Axial Force	Required Axial Force
1	9937	9440
2	9477	9116
3	16924	16719
4	16924	16719
5	22207	21962
6	22207	21962
7	25374	25078
8	25374	25078
9	26429	24859
10	26429	24859
11	25374	23344
12	25374	23344
13	22207	20101
14	22207	20101
15	16924	15129
16	16924	15129
17	9477	8321
18	9937	8645

Bottom Chord Review

- Forces are in tension.
- Comparison of Bottom Chord axial forces for 24K7 joist and for same joist with revised loads.
- All Bottom Chord panels are acceptable.

BC Segment	24К7	Revised Loads Plus Conc. Loads
Number	Design Axial Force	Required Axial Force
1	13525	13188
2	19834	19819
3	24054	23673
4	26165	24969
5	26165	24318
6	24054	21938
7	19834	17831
8	13525	11995

Web Review

- Webs 3, 4, 8, & 8R have higher axial force. Web 10 has force/stress reversal.
- Note the minimum shear for calculating web axial force = 25% of the end reaction.
- Design software can change the values.

Web	24K7	Actual Loads
Number	Axial Force	Axial Force
2	+ 11021	+ 10458
2D	- 1128	-745
3	- 5608	-5626
4	+ 4709	+4880
V2	- 600	-496
5	- 4033	-4283
6	+ 3287	+2961
V3	- 635	-522
7	- 2560	-2364
8	+ 1828	+1941
V4	- 638	-449
9	-1828	-1674
10	+ 1828	-1674
V5	- 635	-536
10R	+ 1828	+1674
9R	-1828	-1674
V6	- 638	-529
8R	+ 1828	+1942
7R	- 2560	-2539
V7	- 635	-513
6R	+ 3287	+3136
5R	- 4033	-3733
V8	- 600	-488
4R	+ 4709	+4330
3R	- 5608	-5077
2DR	- 1128	-741
2R	+ 11021	+9577

Chapter 2

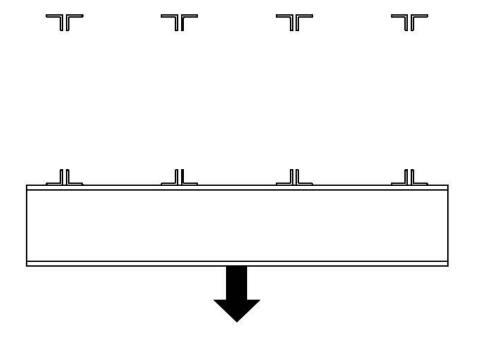
Methods of Supporting Additional Load

Options Before Strengthening

- Capacity of joist needs to be determined
 - Can joist safely support new loads?
 - What are the actual loads?
 - What are the actual load cases?
 - Are stress ratios over 1.0 permitted?

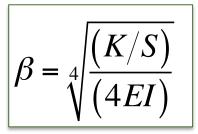
Chapter 2

Methods of Supporting Additional Load


Options Before Strengthening

- Extensive reinforcement may not be practical
 - Option #1 Load distribution
 - Option #2 Add new joists or beams
 - Reinforce existing joists

Load Distribution


Member with Suitable Stiffness Required

- Place member under or through the joists
- Concentrated load distributed to several joists

Load Distribution

Relative Stiffness is Defined by Beta

Where,

- K = stiffness of the joist, kips/in.
- S = spacing of the joists, in.
- E = modulus of elasticity for the beam, ksi I = moment of inertia of the beam, in.4
- β = characteristic parameter, 1/in.

Load Distribution

$$\beta = \sqrt[4]{\frac{\left(K/S\right)}{\left(4EI\right)}}$$

If S is less than $\pi/4\beta$

- The spacing limit is not exceeded
- S = spacing of the joists, in.
- If the length of the beam is less than $1/\beta$
 - The beam may be considered rigid
 - Joist reactions may be determined by static equilibrium.

SJI SJI

Example 2.1 Underhung Monorail Beam Using Load Distribution

This example will illustrate:

- How load distribution can eliminate the need for strengthening
- How to minimize the amount of strengthening by reducing the load to each joist
- How to design the distribution beam placed beneath the joist bottom chord

Given Conditions:

- Hang new underhung monorail beam from the bottom chord of several joists
- Joists are 30K12 spanning 36'-0"
- Joists are spaced 2'-6" o.c.
- Monorail adds a 1200 lb. concentrated load
 - Concentrated load located 10'-0" from joist end

Determine the stiffness of the joists:

Determine approx. moment of inertia from

$$I_j = 26.767 (W_{LL}) (L^3) (10^{-6})$$
 Eq. 2-2

where, WLL = nominal live load that will produce an approximate deflection of Span/360 (RED figure in the Load Table) L = (Span – 0.33), ft.

Determine the stiffness of the joists:

Determine approx. moment of inertia from

$$I_j = 26.767 (W_{LL}) (L^3) (10^{-6})$$
 Eq. 2-2

From the Load Table, the live load deflection for a 30K12 joist with a 36' -0" span is:

WLL = 392 plf I_i =26.767(392)(35.65³)(10⁻⁶)=476 in4

Divide Ij by 1.15 to account for shear deflection:

$$I_{j,eff} = \frac{476}{1.15} = 414in.^4$$
 $K = \frac{P}{\Delta}$

From AISC Manual of Steel Construction, Table 3-23 for a simple beam- concentrated load at any point:

$$\Delta = \frac{Pa^{2}b^{2}}{3EIL} \qquad \qquad K = \frac{P}{\Delta} = \frac{P}{\frac{Pa^{2}b^{2}}{3EI_{j,eff}L}} = \frac{3EI_{j,eff}L}{a^{2}b^{2}}$$
$$K = \frac{3(29000)(414)(35.67)(12)}{[(26)(12)]^{2}[(10)(12)]^{2}} = 11.0 \ k/in.$$

Determine the beam size necessary to distribute the load to three (3) joists:

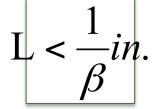
Try W16 x 26 lx = 301 in.4

$$\beta = \sqrt[4]{\frac{(K/S)}{(4EI)}} = \sqrt[4]{\frac{11.0/30}{(4)(29000)(301)}} = 0.0101 \text{ in.}^{-1}$$

Check if spacing,

$$S < \frac{\pi}{4\beta} = 77.6$$
 in.

S = 30 in. < 77.6 in. Therefore, OK


Determine the beam size necessary to distribute the load to three joists:

For W16 x 26 β = 0.0101 in.-1 Check the length of monorail support beam

Beam Length L= 5.0 ft. = 60 in.

1/β = 1/0.0101 = 98.8 in.

60 in. < 98.8 in. Therefore, OK

Solve for the reaction at each joist:

Since the beam can be considered rigid, 1200 lbs. can be uniformly distributed to each joist support 1200 lbs. / 3 = 400 lbs. additional load

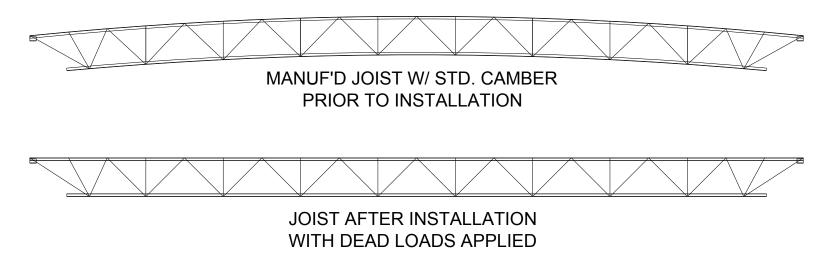
Note: Don't forget to include the beam self-weight. It might not be insignificant.

Reinforcing / Replacing / Adding

Considerations:

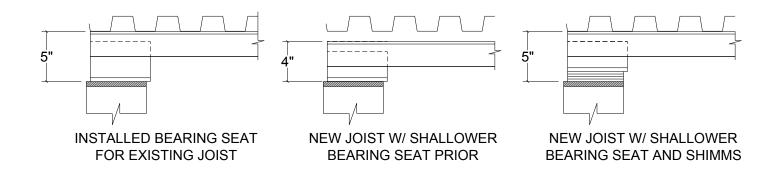
- Cost
- Time Eng'g and Labor for Field Reinf.
 Manuf'g and Installing a New Joist,
- Difficulty of repair Interferences, Access
- Effectiveness of Reinforcing -
- Skill of workman

Reinforcing / Replacing / Adding

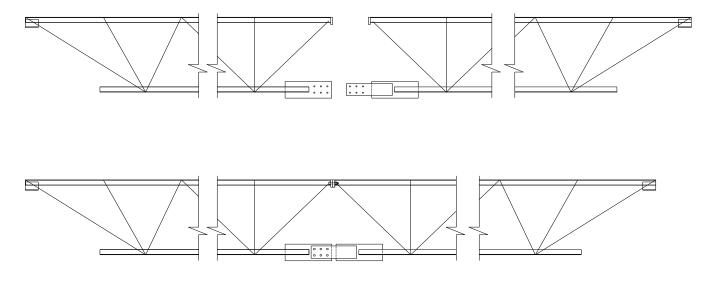

Considerations:

- Existing interferences
 - Piping, electrical conduits, other interferences
 - Removing or relocating could be at a greater expense than reinforcement
- Camber
 - May need to reduce camber in new joists
 - Joists can be ordered with shallower seat depths and then shimmed in the field
 - The joist can be supplied with a splice so two individual pieces can be installed and bolted at the center
- Lateral Stability of the joist top chord
 - Shoot pins through the chord, decking, and slab
 - Rely on bridging to provide lateral support

Reinforcing / Replacement / Adding


Camber – Joists manufacturers rigging tables are set up for SJI standard camber. If replacing or adding a joist, specify zero or no camber.

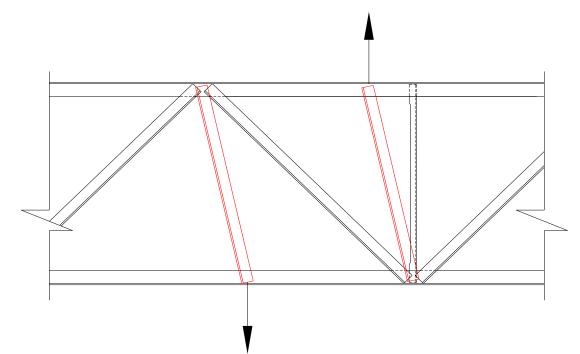
Reinforcing / Replacing / Adding


Bearing Seat Depth – Specify a shallower seat depth and then shim to raise top chord to deck.

Reinforcing / Replacing / Adding

SPLICE – Using a joist w/ a field bolted splice allows each half of the joist set in place and then mated together.

JOIST w/ BOLTED SPLICE



The following will impact reinforcement of both chord and web members:

- Rod web joists
 - New reinforcing webs can be easily added on the outside of the chords.
 - Chords are typically thin angles.
- Crimped angle web joists
 - New reinforcing webs can be easily added on the outside of the chords.
 - If chords and webs need to be reinforced there could be interferences which affect how the reinforcement is done.

For larger LH-Series and Joist Girders - Double angle diagonal webs may intersect at a bottom chord panel point there will not be room to add and weld a reinforcing web at that panel point to pick up a load. The chord will have to be checked for local bending.

The following will impact reinforcement of both chord and web members:

- Chord and web yield strength
 - Recent manufacturing (15 20 years) has used 50 ksi steel for chord and webs.
 - Older joists may have been manufactured using 36 ksi steel and test coupons may be required to determine the Yield Strength of the joist members.

Other considerations:

- Additional weld may be required even though web member size is sufficient for new loads
- Accessibility to reinforce either chord or webs
 - May only be able to reach one side of the joist
- Eccentricities

Evaluation and Modification of Open-Web Steel Joists and Joist Girders

Part 2 - Modification

This webinar will provide more information on the field modification of open web joists.

Date: November 21, 2018 Time: 11:00 am EDT Register: www.steeljoist.org

Earn your PDHs

Polling Question

Which has the bigger effect on the cost of an on site field repair? a) Material b) Labor

THANK YOU

Copyright © 2017 Steel Joist Institute. All Rights Reserved.